The rapid urbanization, industrialization, modernization, and the frequent Middle Eastern dust storms have negatively impacted the ambient air quality in Bahrain. The objective of this study is to identify the most critical atmospheric air pollutants with emphasis on their potential risk to health based on calculated AQI (air quality index) values using EPA approach. The air quality datasets of particulate matters (PM10 and PM2.5), ozone (O3), sulfur dioxide (SO2), nitrogen dioxide (NO2), and carbon monoxide (CO) were measured in January 2012 and August 2012 using five mobile air quality monitoring stations located at different governorates. The results of this study demonstrated that PM10 and PM2.5 are the most critical air pollutants in Bahrain with PM2.5 prevailing during January 2012 and PM10 prevailing during August 2012. The corresponding AQI categories were utilized to evaluate spatial variability of particulate matters in five governorates. The impact of meteorological factors such as ambient air temperature, wind speed, relative humidity, and total precipitation on ambient air quality were discussed. The analysis demonstrated that the highest PM10 concentrations were observed in the Northern Governorate while the highest PM2.5 concentrations were observed in the Capital, Central, and Northern Governorates during August 2012. It was observed that the levels of PM2.5 pollution were higher within proximity of the industrial zone. The results suggested that the average PM2.5/PM10 ratio in August 2012 was lower than in January 2012 due to the Aeolian processes. This study concludes that higher wind speed, total precipitation, relative humidity rates, and lower ambient air temperature in January 2012 assisted with the dissipation of particulate matter thus lowering the pollution levels of both PM10 and PM2.5 in comparison to August 2012. © 2016, Saudi Society for Geosciences.
Yazar |
Jassim M.S. Coskuner G. |
Yayın Türü | Article |
Tek Biçim Adres | https://hdl.handle.net/20.500.12628/4393 |
Tek Biçim Adres | 10.1007/s12517-016-2808-9 |
Konu Başlıkları |
Air quality index
Air quality monitoring AQI Arabian Peninsula Bahrain Particulate matter Temporal variation |
Koleksiyonlar |
Araştırma Çıktıları | WoS | Scopus | TR-Dizin | PubMed | SOBİAD Scopus İndeksli Yayınlar Koleksiyonu WoS İndeksli Yayınlar Koleksiyonu |
Dergi Adı | Arabian Journal of Geosciences |
Dergi Cilt Bilgisi | 10 |
Dergi Sayısı | 1 |
Sayfalar | - |
Yayın Yılı | 2017 |
Eser Adı [dc.title] | Assessment of spatial variations of particulate matter (PM10 and PM2.5) in Bahrain identified by air quality index (AQI) |
Yazar [dc.contributor.author] | Jassim M.S. |
Yazar [dc.contributor.author] | Coskuner G. |
Yayın Yılı [dc.date.issued] | 2017 |
Yayıncı [dc.publisher] | Springer Verlag |
Yayın Türü [dc.type] | article |
Özet [dc.description.abstract] | The rapid urbanization, industrialization, modernization, and the frequent Middle Eastern dust storms have negatively impacted the ambient air quality in Bahrain. The objective of this study is to identify the most critical atmospheric air pollutants with emphasis on their potential risk to health based on calculated AQI (air quality index) values using EPA approach. The air quality datasets of particulate matters (PM10 and PM2.5), ozone (O3), sulfur dioxide (SO2), nitrogen dioxide (NO2), and carbon monoxide (CO) were measured in January 2012 and August 2012 using five mobile air quality monitoring stations located at different governorates. The results of this study demonstrated that PM10 and PM2.5 are the most critical air pollutants in Bahrain with PM2.5 prevailing during January 2012 and PM10 prevailing during August 2012. The corresponding AQI categories were utilized to evaluate spatial variability of particulate matters in five governorates. The impact of meteorological factors such as ambient air temperature, wind speed, relative humidity, and total precipitation on ambient air quality were discussed. The analysis demonstrated that the highest PM10 concentrations were observed in the Northern Governorate while the highest PM2.5 concentrations were observed in the Capital, Central, and Northern Governorates during August 2012. It was observed that the levels of PM2.5 pollution were higher within proximity of the industrial zone. The results suggested that the average PM2.5/PM10 ratio in August 2012 was lower than in January 2012 due to the Aeolian processes. This study concludes that higher wind speed, total precipitation, relative humidity rates, and lower ambient air temperature in January 2012 assisted with the dissipation of particulate matter thus lowering the pollution levels of both PM10 and PM2.5 in comparison to August 2012. © 2016, Saudi Society for Geosciences. |
Kayıt Giriş Tarihi [dc.date.accessioned] | 2019-12-23 |
Açık Erişim Tarihi [dc.date.available] | 2019-12-23 |
Yayın Dili [dc.language.iso] | eng |
Konu Başlıkları [dc.subject] | Air quality index |
Konu Başlıkları [dc.subject] | Air quality monitoring |
Konu Başlıkları [dc.subject] | AQI |
Konu Başlıkları [dc.subject] | Arabian Peninsula |
Konu Başlıkları [dc.subject] | Bahrain |
Konu Başlıkları [dc.subject] | Particulate matter |
Konu Başlıkları [dc.subject] | Temporal variation |
Haklar [dc.rights] | info:eu-repo/semantics/closedAccess |
ISSN [dc.identifier.issn] | 1866-7511 |
Dergi Adı [dc.relation.journal] | Arabian Journal of Geosciences |
Dergi Sayısı [dc.identifier.issue] | 1 |
Dergi Cilt Bilgisi [dc.identifier.volume] | 10 |
Tek Biçim Adres [dc.identifier.uri] | https://dx.doi.org/10.1007/s12517-016-2808-9 |
Tek Biçim Adres [dc.identifier.uri] | https://hdl.handle.net/20.500.12628/4393 |