Enhanced nitrogen in steels containing vanadium causes fine precipitates of vanadium nitride, which improve the hardenability properties. However, understanding the response of such steels to electrical discharge machining (EDM) is incomplete and needs further investigation. Therefore, EDM of enhanced nitrogen in steels containing vanadium was compared with a similar compositional steel that was free of nitrogen. The surface morphology, microstructural alterations, microhardness variation, and compositional depth profiling of the samples machined by EDM in oil and deionized water dielectric liquids were examined. Microscopic studies were carried out using optical and scanning electron microscopy. Phases were identified by X-ray diffractometry, and elemental depth profiling was performed using glow discharge optical emission spectroscopy. The hardness of the resolidified and heat-affected layers was measured using a Vickers type microhardness tester. The results of this study revealed that the dissolved nitrogen in steel decreased the probability of surface cracks and resulted in a softer resolidified layer structure when machining in the oil dielectric liquid. Thus, the presence of nitrogen reduced the formation of tension-induced martensite in the resolidified layer. Moreover, the heat-affected zone below the resolidified layer exhibited a uniform and harder structure, compared with the steel without nitrogen content, indicating the fast nature of the thermal cycles in EDM. The free nitrogen in steel did not dissociate during sparking; therefore, precipitation strengthening occurred in the heat-affected zone. © 2018, The Minerals, Metals & Materials Society and ASM International.
Yazar |
Ekmekcİ N.İ. Keskİn İ. |
Yayın Türü | Article |
Tek Biçim Adres | https://hdl.handle.net/20.500.12628/7701 |
Tek Biçim Adres | 10.1007/s11663-018-1453-y |
Koleksiyonlar |
Araştırma Çıktıları | WoS | Scopus | TR-Dizin | PubMed | SOBİAD Scopus İndeksli Yayınlar Koleksiyonu WoS İndeksli Yayınlar Koleksiyonu |
Dergi Adı | Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science |
Dergi Cilt Bilgisi | 50 |
Dergi Sayısı | 1 |
Sayfalar | 98 - 109 |
Yayın Yılı | 2019 |
Eser Adı [dc.title] | Surface Characteristics and Hardness Variations in Electrical Discharge Machining of Enhanced Nitrogen in Vanadium Steels |
Yazar [dc.contributor.author] | Ekmekcİ N.İ. |
Yazar [dc.contributor.author] | Keskİn İ. |
Yayın Yılı [dc.date.issued] | 2019 |
Yayıncı [dc.publisher] | Springer Boston |
Yayın Türü [dc.type] | article |
Özet [dc.description.abstract] | Enhanced nitrogen in steels containing vanadium causes fine precipitates of vanadium nitride, which improve the hardenability properties. However, understanding the response of such steels to electrical discharge machining (EDM) is incomplete and needs further investigation. Therefore, EDM of enhanced nitrogen in steels containing vanadium was compared with a similar compositional steel that was free of nitrogen. The surface morphology, microstructural alterations, microhardness variation, and compositional depth profiling of the samples machined by EDM in oil and deionized water dielectric liquids were examined. Microscopic studies were carried out using optical and scanning electron microscopy. Phases were identified by X-ray diffractometry, and elemental depth profiling was performed using glow discharge optical emission spectroscopy. The hardness of the resolidified and heat-affected layers was measured using a Vickers type microhardness tester. The results of this study revealed that the dissolved nitrogen in steel decreased the probability of surface cracks and resulted in a softer resolidified layer structure when machining in the oil dielectric liquid. Thus, the presence of nitrogen reduced the formation of tension-induced martensite in the resolidified layer. Moreover, the heat-affected zone below the resolidified layer exhibited a uniform and harder structure, compared with the steel without nitrogen content, indicating the fast nature of the thermal cycles in EDM. The free nitrogen in steel did not dissociate during sparking; therefore, precipitation strengthening occurred in the heat-affected zone. © 2018, The Minerals, Metals & Materials Society and ASM International. |
Kayıt Giriş Tarihi [dc.date.accessioned] | 2019-12-23 |
Açık Erişim Tarihi [dc.date.available] | 2019-12-23 |
Yayın Dili [dc.language.iso] | eng |
Haklar [dc.rights] | info:eu-repo/semantics/closedAccess |
ISSN [dc.identifier.issn] | 1073-5615 |
Sponsor YAYINCI [dc.description.sponsorship] | Bülent Ecevit Üniversitesi: 2015-77654622-02 |
Sponsor YAYINCI [dc.description.sponsorship] | The authors acknowledge the funding by The Zonguldak Bülent Ecevit University Research Program. (Grant No. 2015-77654622-02.) |
İlk Sayfa Sayısı [dc.identifier.startpage] | 98 |
Son Sayfa Sayısı [dc.identifier.endpage] | 109 |
Dergi Adı [dc.relation.journal] | Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science |
Dergi Sayısı [dc.identifier.issue] | 1 |
Dergi Cilt Bilgisi [dc.identifier.volume] | 50 |
Tek Biçim Adres [dc.identifier.uri] | https://dx.doi.org/10.1007/s11663-018-1453-y |
Tek Biçim Adres [dc.identifier.uri] | https://hdl.handle.net/20.500.12628/7701 |