Computer-assisted diagnosis of vertebral column diseases by adaptive neuro-fuzzy inference system

In this study, a clustering algorithm based on adaptive neural fuzzy inference system (ANFIS) was used for computer-assisted diagnosis of the vertebral column disorder from machine learning databases of UCI (University of California Irvine). Features of pelvic incidence, pelvic tilt and lumbar lordosis angle given in this dataset was applied to the inputs of the algorithm. The performance of algorithm was evaluated using mean square error and regression coefficient criteria to discriminate patients with vertebral column disease from healthy subjects. As a result, the classification performance of 90.82% was obtained by using the generated model of ANFIS. © 2018 IEEE.

Dergi Adı 26th IEEE Signal Processing and Communications Applications Conference, SIU 2018
Sayfalar 1 - 4
Yayın Yılı 2018
Eser Adı
[dc.title]
Computer-assisted diagnosis of vertebral column diseases by adaptive neuro-fuzzy inference system
Yazar
[dc.contributor.author]
Uzun, Rukiye
Yazar
[dc.contributor.author]
İşler, Yalçın
Yazar
[dc.contributor.author]
Erkaymaz, Okan
Yazar
[dc.contributor.author]
Kocadayı, Yasemin
Yayın Yılı
[dc.date.issued]
2018
Yayıncı
[dc.publisher]
Institute of Electrical and Electronics Engineers Inc.
Yayın Türü
[dc.type]
proceedings
Açıklama
[dc.description]
Aselsan;et al.;Huawei;IEEE Signal Processing Society;IEEE Turkey Section;Netas
Açıklama
[dc.description]
26th IEEE Signal Processing and Communications Applications Conference, SIU 2018 -- 2 May 2018 through 5 May 2018 -- -- 137780
Özet
[dc.description.abstract]
In this study, a clustering algorithm based on adaptive neural fuzzy inference system (ANFIS) was used for computer-assisted diagnosis of the vertebral column disorder from machine learning databases of UCI (University of California Irvine). Features of pelvic incidence, pelvic tilt and lumbar lordosis angle given in this dataset was applied to the inputs of the algorithm. The performance of algorithm was evaluated using mean square error and regression coefficient criteria to discriminate patients with vertebral column disease from healthy subjects. As a result, the classification performance of 90.82% was obtained by using the generated model of ANFIS. © 2018 IEEE.
Kayıt Giriş Tarihi
[dc.date.accessioned]
2019-12-23
Açık Erişim Tarihi
[dc.date.available]
2019-12-23
Yayın Dili
[dc.language.iso]
tur
Konu Başlıkları
[dc.subject]
ANFIS
Konu Başlıkları
[dc.subject]
Clustering
Konu Başlıkları
[dc.subject]
Diagnosis
Konu Başlıkları
[dc.subject]
Machine learning
Konu Başlıkları
[dc.subject]
Vertebral column
Haklar
[dc.rights]
info:eu-repo/semantics/closedAccess
Alternatif Başlık
[dc.title.alternative]
Adaptif sinirsel bulanık çıkarım sistemi ile omurga rahatsızlığının bilgisayar destekli teşhisi
İlk Sayfa Sayısı
[dc.identifier.startpage]
1
Son Sayfa Sayısı
[dc.identifier.endpage]
4
Dergi Adı
[dc.relation.journal]
26th IEEE Signal Processing and Communications Applications Conference, SIU 2018
Tek Biçim Adres
[dc.identifier.uri]
https://dx.doi.org/10.1109/SIU.2018.8404736
Tek Biçim Adres
[dc.identifier.uri]
https://hdl.handle.net/20.500.12628/4870
Görüntülenme Şehir
Görüntülenme Ülke
İndirme Şehir
İndirme Ülke
Görüntülenme & İndirme
Görüntülenme
13
09.12.2022 tarihinden bu yana
İndirme
1
09.12.2022 tarihinden bu yana
Son Erişim Tarihi
02 Mayıs 2023 11:30
Google Kontrol
Tıklayınız
Altmetric
https://hdl.handle.net/20.500.12628/4870">
algorithm vertebral column pelvic performance square regression coefficient criteria discriminate evaluated patients disease generated obtained healthy classification result subjects inputs lumbar applied diagnosis clustering adaptive neural inference system (ANFIS) computer-assisted disorder dataset machine learning databases
6698 sayılı Kişisel Verilerin Korunması Kanunu kapsamında yükümlülüklerimiz ve çerez politikamız hakkında bilgi sahibi olmak için alttaki bağlantıyı kullanabilirsiniz.


Bu site altında yer alan tüm kaynaklar Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.