Classification of cervical cancer data and the effect of random subspace algorithms on classification performance

Computer assisted automatic diagnostic systems are used for the purpose of speeding up diagnosis and treatment and helping to make the right decision. In this study, cervical cancer is identified using four basic classifiers: Naive Bayes (NB), k-Nearest Neighbor (kNN), Multilayer Perceptron (MLP) and Decision Trees (KA-C4.5) algorithms and random subspaces ensemble algorithm. Gain Ratio Attribute Evaluation (GRAE) feature extraction algorithm is applied to contribute to classification performance. The classification results obtained with all datasets and reduced datasets are compared with respect to performance criteria such as accuracy, Root Mean Square Error (RMSE), Sensitivity, Specificity performance criteria. According to the obtained performance analysis, it is seen that the classification performance with the random subspace ensemble algorithm using the kNN basic classifier on the reduced data set is the highest (%95.51). © 2018 IEEE.

Eser Adı
[dc.title]
Classification of cervical cancer data and the effect of random subspace algorithms on classification performance
Yazar
[dc.contributor.author]
Erkaymaz, Okan
Yazar
[dc.contributor.author]
Palabaş, Tuğba
Yayın Yılı
[dc.date.issued]
2018
Yayıncı
[dc.publisher]
Institute of Electrical and Electronics Engineers Inc.
Yayın Türü
[dc.type]
proceedings
Açıklama
[dc.description]
Aselsan;et al.;Huawei;IEEE Signal Processing Society;IEEE Turkey Section;Netas
Açıklama
[dc.description]
26th IEEE Signal Processing and Communications Applications Conference, SIU 2018 -- 2 May 2018 through 5 May 2018 -- -- 137780
Özet
[dc.description.abstract]
Computer assisted automatic diagnostic systems are used for the purpose of speeding up diagnosis and treatment and helping to make the right decision. In this study, cervical cancer is identified using four basic classifiers: Naive Bayes (NB), k-Nearest Neighbor (kNN), Multilayer Perceptron (MLP) and Decision Trees (KA-C4.5) algorithms and random subspaces ensemble algorithm. Gain Ratio Attribute Evaluation (GRAE) feature extraction algorithm is applied to contribute to classification performance. The classification results obtained with all datasets and reduced datasets are compared with respect to performance criteria such as accuracy, Root Mean Square Error (RMSE), Sensitivity, Specificity performance criteria. According to the obtained performance analysis, it is seen that the classification performance with the random subspace ensemble algorithm using the kNN basic classifier on the reduced data set is the highest (%95.51). © 2018 IEEE.
Kayıt Giriş Tarihi
[dc.date.accessioned]
2019-12-23
Açık Erişim Tarihi
[dc.date.available]
2019-12-23
Yayın Dili
[dc.language.iso]
tur
Konu Başlıkları
[dc.subject]
Basic classifiers
Konu Başlıkları
[dc.subject]
Cervical cancer
Konu Başlıkları
[dc.subject]
Feature extraction
Konu Başlıkları
[dc.subject]
Random subspaces
Haklar
[dc.rights]
info:eu-repo/semantics/closedAccess
Alternatif Başlık
[dc.title.alternative]
Serviks kanseri verilerinin sınıflandırılması ve rastsal altuzaylar algoritmasının sınıflandırma performansına etkisi
İlk Sayfa Sayısı
[dc.identifier.startpage]
1
Son Sayfa Sayısı
[dc.identifier.endpage]
4
Dergi Adı
[dc.relation.journal]
26th IEEE Signal Processing and Communications Applications Conference, SIU 2018
Tek Biçim Adres
[dc.identifier.uri]
https://dx.doi.org/10.1109/SIU.2018.8404197
Tek Biçim Adres
[dc.identifier.uri]
https://hdl.handle.net/20.500.12628/4685
Görüntülenme Şehir
Görüntülenme Ülke
İndirme Şehir
İndirme Ülke
Görüntülenme & İndirme
Görüntülenme
14
09.12.2022 tarihinden bu yana
İndirme
1
09.12.2022 tarihinden bu yana
Son Erişim Tarihi
02 Mayıs 2023 11:30
Google Kontrol
Tıklayınız
Altmetric
https://hdl.handle.net/20.500.12628/4685">
performance classification algorithm datasets ensemble criteria random obtained reduced respect compared results contribute applied accuracy highest classifier subspace analysis According Specificity Sensitivity (RMSE) feature Square extraction Computer (GRAE) treatment cervical decision helping diagnosis identified speeding
6698 sayılı Kişisel Verilerin Korunması Kanunu kapsamında yükümlülüklerimiz ve çerez politikamız hakkında bilgi sahibi olmak için alttaki bağlantıyı kullanabilirsiniz.


Bu site altında yer alan tüm kaynaklar Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.