The genetic algorithms (GAs) can be used as a global optimization tool for continuous and discrete functions problems. However, a simple GA may suffer from slow convergence, and instability of results. GAs' problem solution power can be increased by local searching. In this study a new local random search algorithm based on GAs is suggested in order to reach a quick and closer result to the optimum solution. © 2007 Elsevier Inc. All rights reserved.
Eser Adı (dc.title) | Improving genetic algorithms' performance by local search for continuous function optimization |
Yazar (dc.contributor.author) | Hamzaçebi C. |
Yayın Yılı (dc.date.issued) | 2008 |
Yayın Türü (dc.type) | article |
Özet (dc.description.abstract) | The genetic algorithms (GAs) can be used as a global optimization tool for continuous and discrete functions problems. However, a simple GA may suffer from slow convergence, and instability of results. GAs' problem solution power can be increased by local searching. In this study a new local random search algorithm based on GAs is suggested in order to reach a quick and closer result to the optimum solution. © 2007 Elsevier Inc. All rights reserved. |
Kayıt Giriş Tarihi (dc.date.accessioned) | 2019-12-23 |
(dc.date.available) | 2019-12-23 |
Yayın Dili (dc.language.iso) | eng |
Konu Başlıkları (dc.subject) | Function minimization |
Konu Başlıkları (dc.subject) | Genetic algorithms |
Konu Başlıkları (dc.subject) | Local search |
Konu Başlıkları (dc.subject) | Random search |
Haklar (dc.rights) | info:eu-repo/semantics/closedAccess |
ISSN (dc.identifier.issn) | 0096-3003 |
İlk Sayfa Sayısı (dc.identifier.startpage) | 309 |
Son Sayfa Sayısı (dc.identifier.endpage) | 317 |
Dergi Adı (dc.relation.journal) | Applied Mathematics and Computation |
Dergi Sayısı (dc.identifier.issue) | 1 |
Dergi Cilt Bilgisi (dc.identifier.volume) | 196 |
Tek Biçim Adres (dc.identifier.uri) | https://dx.doi.org/10.1016/j.amc.2007.05.068 |
Tek Biçim Adres (dc.identifier.uri) | https://hdl.handle.net/20.500.12628/6183 |