Erkaymaz, Okan | Özer, Mahmut | Perc, Matjaž
Article | 2017 | Applied Mathematics and Computation311 , pp.22 - 28
We investigate the performance of two different small-world feedforward neural networks for the diagnosis of diabetes. We use the Pima Indians Diabetic Dataset as input. We have previously shown than the Watts–Strogatz small-world feedforward neural network delivers a better classification performance than conventional feedforward neural networks. Here, we compare this performance further with the one delivered by the Newman–Watts small-world feedforward neural network, and we show that the latter is better still. Moreover, we show that Newman–Watts small-world feedforward neural networks yield the highest output correlation as well . . . as the best output error parameters. © 2017 Elsevier Inc Daha fazlası Daha az
Erkaymaz, Hande | Özer, Mahmut | Orak, İlhami Muharrem
Article | 2015 | Chaos, Solitons and Fractals77 , pp.225 - 229
The electrooculogram signals are very important at extracting information about detection of directional eye movements. Therefore, in this study, we propose a new intelligent detection model involving an artificial neural network for the eye movements based on the electrooculogram signals. In addition to conventional eye movements, our model also involves the detection of tic and blinking of an eye. We extract only two features from the electrooculogram signals, and use them as inputs for a feed-forwarded artificial neural network. We develop a new approach to compute these two features, which we call it as a movement range. The res . . .ults suggest that the proposed model have a potential to become a new tool to determine the directional eye movements accurately. © 2015 Elsevier Ltd. All rights reserved Daha fazlası Daha az
Erkaymaz, Okan | Özer, Mahmut
Article | 2016 | Chaos, Solitons and Fractals83 , pp.178 - 185
Artificial intelligent systems have been widely used for diagnosis of diseases. Due to their importance, new approaches are attempted consistently to increase the performance of these systems. In this study, we introduce a new approach for diagnosis of diabetes based on the Small-World Feed Forward Artificial Neural Network (SW- FFANN). We construct the small-world network by following the Watts-Strogatz approach, and use this architecture for classifying the diabetes, and compare its performance with that of the regular or the conventional FFANN. We show that the classification performance of the SW-FFANN is better than that of the . . . conventional FFANN. The SW-FFANN approach also results in both the highest output correlation and the best output error parameters. We also perform the accuracy analysis and show that SW-FFANN approach exhibits the highest classifier performance. © 2015 Elsevier Ltd. All rights reserved Daha fazlası Daha az
Kaya, Ceren | Erkaymaz, Okan | Ayar, Orhan | Özer, Mahmut
Proceedings | 2018 | 26th IEEE Signal Processing and Communications Applications Conference, SIU 2018 , pp.1 - 4
Refractive disorders are common health problems in the community and they are the most important cause of visual impairment. In this study, it was aimed to classify the individuals who have hypermetropia and myopia refractive disorders or not. For this, horizontal and vertical Electrooculogram (EOG) signal data from the right and left eyes of the individuals were used. The performance of the data was investigated by using Logistic Regression (LR), Naive Bayes (NB), Random Forest (RF) and REP Tree (RT) data mining methods. According to the obtained results, REP Tree method has shown the most successful classification performance to d . . .etect hypermetropia and myopia refractive disorders from Electrooculogram (EOG) signals. © 2018 IEEE Daha fazlası Daha az
Kaya, Ceren | Erkaymaz, Okan | Ayar, Orhan | Özer, Mahmut
Proceedings | 2017 | 2017 Medical Technologies National Conference, TIPTEKNO 20172017-January , pp.1 - 4
'Diabetes Mellitus (Diabetes)' is a disease based on insulin hormone disorders secreted from the pancreas gland. Clinical findings find out that diabetes causes some diseases in vital organs. 'Diabetic Retinopathy' is one of the most common eye diseases based on diabetes, and it is the leading cause of visual loss resulting from structural changes in the retinal vessels. Recent researches show that signals from vital organs can be used to diagnose diseases in the literature. In this study, the features of horizontal and vertical Video-Oculography (VOG) signals from right and left eye are used to classify non-proliferative and prolif . . .erative diabetic retinopathy disease. 25 statistical features are obtained using discrete wavelet transform with VOG signals from 24 subjects. Feature selection is performed using C4.5 decision tree algorithm from 25 features obtained. The statistical features obtained from C4.5 decision tree and discrete wavelet transform are applied as input to artificial neural networks and the classification performance of the 'Diabetic Retinopathy' disease are compared according to these two methods. Our results show that feature selection by C4.5 decision tree algorithm (96.87%) provides better classification performance than feature extraction with discrete wavelet transform (93.75%). © 2017 IEEE Daha fazlası Daha az
Erkaymaz, Hande | Özer, Mahmut | Kaya, Ceren
Conference Object | 2015 | 2015 19TH NATIONAL BIOMEDICAL ENGINEERING MEETING (BIYOMUT) , pp.1 - 4
The eye, which has the most advanced features among sense organs, has a perfect functioning on people. Furthermore, as it is placed in the lead role of vision, shows the importance for people is quite big. Nowadays, biomedical devices developed for patients who have mobility are benefiting from eye movements. Electrooculogram studies are especially designed on the basis of the signal depending on the movement of your eyes. Electrical origin of EOG biological signal, that occur around the eye pupil, makes an attempt to meet the needs of patients by the right, left, up, down and blinking action. In this study, 4 basic differences exis . . .ting in the direction of movement using voltage controlled EOG signal studies have tried to determine the Neuro-Fuzzy model. Determining the direction of Neuro-Fuzzy control system demonstrates how it can be successfully used as. In addition, control algorithms of artificial intelligence systems that use this kind of eye signals benefiting from the input of the detection process is advantageous in the classification of complex environment Daha fazlası Daha az
Uzun, Rukiye | Erkaymaz, Okan | Şenyer Yapıcı, İrem
Article | 2018 | Gazi University Journal of Science31 ( 1 ) , pp.100 - 110
The surface electromyography (sEMG) is useful tool to diagnose of knee disorder in clinical environments. It assists in designing the clinical decision support systems based classification. These systems exhibit complex structure because of sEMG data obtained at different postures at this study. In this context, we have researched the classification performance of each posture using artificial neural network (ANN) and logistic regression (LR) models and have showed that the classification success of the model used sitting posture data is higher than other postures (gait and standing). We have promoted this finding by using machine l . . .earning and statistical methods. The results show that the proposed models can classify with over 95% of success, and also the ANN model has higher performance than the LR model. Our ANN model outperforms reported studies in literature. The accuracy results indicate that the models used the only sitting posture data can exhibit successful classification for the knee disorder. Therefore, the usage of complex dataset is prevented for diagnosing knee disorder. © 2018, Gazi University Eti Mahallesi. All rights reserved Daha fazlası Daha az
Ustabaş, Kaya Gülhan | Erkaymaz, Okan | Saraç, Zehra
Article | 2019 | Soft Computing23 ( 18 ) , pp.8827 - 8837
In this paper,a fuzzy interference and an adaptive neuro-fuzzy interference system models have been presented in order to accelerate designing of the digital holographic setup without experiment. The setting parameters of experimental holographic setup, which affect the quality of images obtained from reconstructed holograms, are predicted digitally by proposed models before the recording process. Hence, we reduce the required time for designing of digital holographic setup with optimization process. The adaptive neuro-fuzzy interference system model for the optimization of the digital holographic setup is first attempt in the liter . . .ature. The accuracy of the proposed models is examined by comparing the presented models and actual calculated experimental root-mean-square values. As a result, the accuracy of the adaptive neuro-fuzzy interference system shows the better performance than the fuzzy interference system. Moreover, the design of experimental setup can be occurred numerically in a short time by using adaptive neuro-fuzzy interference system models. © 2018, Springer-Verlag GmbH Germany, part of Springer Nature Daha fazlası Daha az
Kaya, Gülhan Ustabaş | Erkaymaz, Okan | Saraç, Zehra
Article | 2016 | Expert Systems with Applications56 , pp.177 - 185
In this study, the optimization of the digital holography setup is achieved by a using fuzzy logic prediction system. In fact, when this optimization process is experimentally performed, some parameters are changed in the setup. These parameters affect directly the obtained image quality after a reconstruction process, which is determined by normalized root mean square. The aim of this study is to achieve the optimization of digital holographic setup by using both experimental and fuzzy logic prediction systems. Furthermore, the required time during the experimental optimization can be lowered by using a numerical method like the fu . . .zzy logic prediction system. Here, the experimental optimization results and the optimization results obtained by the fuzzy logic prediction system are compared. It is offered that the designed experimental system can be optimized by using an artificial intelligent tool. The applied fuzzy logic prediction model is used the first time for optimization of hologram recording setup. As a result, it is reached a conclusion that the optimization of digital holographic setup can be numerically performed by the fuzzy logic prediction system. Moreover, while digital holographic setup is experimentally designed, the required time for optimization is reduced, as well. © 2016 Elsevier Ltd. All rights reserved Daha fazlası Daha az
Kara, Ferdi | Kaya, Hakan | Erkaymaz, Okan | Öztürk, Ertan
Proceedings | 2016 | Proceedings of the 2016 International Symposium on INnovations in Intelligent SysTems and Applications, INISTA 2016 , pp.177 - 185
In wireless communications, the cooperative communication (CC) technology promises performance gains compared to traditional Single-Input Single Output (SISO) techniques. Therefore, the CC technique is one of the nominees for 5G networks. In the Decode-And-Forward (DF) relaying scheme which is one of the CC techniques, determination of the threshold value at the relay has a key role for the system performance and power usage. In this paper, we propose prediction of the optimal threshold values for the best relay selection scheme in cooperative communications, based on Artificial Neural Networks (ANNs) for the first time in literatur . . .e. The average link qualities and number of relays have been used as inputs in the prediction of optimal threshold values using Artificial Neural Networks (ANNs): Multi-Layer Perceptron (MLP) and Radial Basis Function (RBF) networks. The MLP network has better performance from the RBF network on the prediction of optimal threshold value when the same number of neurons is used at the hidden layer for both networks. Besides, the optimal threshold values obtained using ANNs are verified by the optimal threshold values obtained numerically using the closed form expression derived for the system. The results show that the optimal threshold values obtained by ANNs on the best relay selection scheme provide a minimum Bit-Error-Rate (BER) because of the reduction of the probability that error propagation may occur. Also, for the same BER performance goal, prediction of optimal threshold values provides 2dB less power usage, which is great gain in terms of green communication. © 2016 IEEE Daha fazlası Daha az
Erkaymaz, Hande | Özer, Mahmut | Kaya, Ceren | Orak, I. Muharrem
Proceedings | 2015 | 2015 23RD SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU) , pp.1228 - 1231
Nowadays, artificial movements have been obtained by utilizing other organs for paralyzed patients. Especially the usage of eye movements for giving message to outside world became popular as a scientific subject. In studies according to eye movements, the Electrooculogram (EOG) signal is used. In this study, the vertical and horizontal FOG signals taken from electrodes, placed around the eyes, have been modelled by using Artificial Neural Networks (ANN) which is one of artificial intelligent technique. The system can sense four main directions (Right, Left, Up and Down) at the same time it can also detect blinking movements. Firstl . . .y, the signals have been pre-filtered, amplified and classified by ANN. The performance of recommended model has been demonstrated by analyzing statistical accuracy and confusion matrix according to the features of obtained signal. It has been seen that eye movements can be successfully determined by designed model Daha fazlası Daha az
Kaya, Ceren | Erkaymaz, Okan | Ayar, Orhan | Özer, Mahmut
Article | 2018 | Chaos, Solitons and Fractals114 , pp.164 - 174
In this study, we introduce two hybrid artificial neural network models with particle swarm optimization algorithm to diagnose diabetic retinopathy based on the Video-Oculography signals. The hybrid models use Discrete Wavelet Transform and Hilbert-Huang Transform separately to extract features from the signals. The classification performance of both models is analyzed comparatively. We show that the model based on Hilbert–Huang Transform exhibits better classification performance than the model based on the Discrete Wavelet Transform. © 2018 Elsevier Ltd