Filtreler
Araştırmacılar
Enhancement of pacemaker induced stochastic resonance by an autapse in a scale-free neuronal network

Yılmaz, Ergin | Baysal, Veli | Perc, Matjaž | Özer, Mahmut

Article | 2016 | Science China Technological Sciences59 ( 3 ) , pp.364 - 370

An autapse is an unusual synapse that occurs between the axon and the soma of the same neuron. Mathematically, it can be described as a self-delayed feedback loop that is defined by a specific time-delay and the so-called autaptic coupling strength. Recently, the role and function of autapses within the nervous system has been studied extensively. Here, we extend the scope of theoretical research by investigating the effects of an autapse on the transmission of a weak localized pacemaker activity in a scale-free neuronal network. Our results reveal that by mediating the spiking activity of the pacemaker neuron, an autapse increases . . .the propagation of its rhythm across the whole network, if only the autaptic time delay and the autaptic coupling strength are properly adjusted. We show that the autapse-induced enhancement of the transmission of pacemaker activity occurs only when the autaptic time delay is close to an integer multiple of the intrinsic oscillation time of the neurons that form the network. In particular, we demonstrate the emergence of multiple resonances involving the weak signal, the intrinsic oscillations, and the time scale that is dictated by the autapse. Interestingly, we also show that the enhancement of the pacemaker rhythm across the network is the strongest if the degree of the pacemaker neuron is lowest. This is because the dissipation of the localized rhythm is contained to the few directly linked neurons, and only afterwards, through the secondary neurons, it propagates further. If the pacemaker neuron has a high degree, then its rhythm is simply too weak to excite all the neighboring neurons, and propagation therefore fails. © 2016, Science China Press and Springer-Verlag Berlin Heidelberg Daha fazlası Daha az

Biodegradable poly(ε-caprolactone)-based graft copolymers via poly(linoleic acid): In vitro enzymatic evaluation

Allı, Sema | Tığlı-Aydın, Rahime Seda | Allı, Abdülkadir | Hazer, Baki

Article | 2015 | JAOCS, Journal of the American Oil Chemists' Society92 ( 3 ) , pp.449 - 458

Well-defined graft copolymers based on poly(?-caprolactone) (PCL) via poly(linoleic acid) (PLina), are derived from soybean oil. Poly(linoleic acid)-g-poly(?-caprolactone) (PLina-g-PCL) and poly(linoleic acid)-g-poly(styrene)-g-poly(?-caprolactone) (PLina-g-PSt-g-PCL) were synthesized by ring-opening polymerization of ?-caprolactone initiated by PLina and one-pot synthesis of graft copolymers, and by ring-opening polymerization and free radical polymerization by using PLina, respectively. PLina-g-PCL, PLina-g-PSt-g-PCL3, and PLina-g-PSt-g-PCL4 copolymers containing 96.97, 75.04 and 80.34 mol% CL, respectively, have been investigated . . . regarding their enzymatic degradation properties in the presence of Pseudomonas lipase. In terms of weight loss, after 1 month, 51.5% of PLina-g-PCL, 18.8% of PLina-g-PSt-g-PCL3, and 38.4% of PLina-g-PSt-g-PCL4 were degraded, leaving remaining copolymers with molecular weights of 16,140, 83,220 and 70,600 Da, respectively. Introducing the PLina unit into the copolymers greatly decreased the degradation rate. The molar ratio of [CL]/[Lina] dramatically decreased, from 21.3 to 8.4, after 30 days of incubation. Moreover, reduced PCL content in PLina-g-PSt-g-PCL copolymers decreased the degradation rate, probably due to the PSt enrichment within the structure, which blocks lipase contact with PCL units. Thus, copolymerization of PCL with PLina and PSt units leads to a controllable degradation profile, which encourages the use of these polymers as promising biomaterials for tissue engineering applications. © AOCS 2015 Daha fazlası Daha az

Influence of Soybean Oil Blending with Polylactic Acid (PLA) Films: In Vitro and In Vivo Evaluation

Aydın, R. Seda Tığlı | Akyol, Elvan | Hazer, Baki

Article | 2017 | JAOCS, Journal of the American Oil Chemists' Society94 ( 3 ) , pp.413 - 424

Due to the great interest in oil-based polymers, which are prepared from renewable resources, different forms and amounts of soybean oil-based PLA films were prepared and evaluated for their potential usage as a medical biomaterial. Soybean oil, epoxidized soybean oil and auto-oxidized soybean oil were blended with PLA and PLA/oil films with appropriate oil amounts [2, 7, 14 and 20% (w/w)] were obtained by solvent casting. Thermal stability and plasticization effect were determined by adjusting oil amounts and type. Epoxidized soybean oil blended films showed the smallest increase in elongation breaks (13–20%) and the highest decrea . . .se in thermal decomposition temperatures (364–327 °C) compared to other oil blended films. In vitro quantitative and qualitative cytotoxicity results showed no reactivity (grade 0) for the L929 cells treated with 14% (w/w) oil blended PLA films. In vivo irritation and implantation tests concluded that 14% (w/w) oil blended PLA films were non-irritant. No erythema, no oedema reactions, no traumatic necrosis and foreign debris were observed. Thus, along with superior biocompatibility, PLA/oil films can replace petroleum-based products for several biomedical uses. © 2017, AOCS Daha fazlası Daha az


6698 sayılı Kişisel Verilerin Korunması Kanunu kapsamında yükümlülüklerimiz ve çerez politikamız hakkında bilgi sahibi olmak için alttaki bağlantıyı kullanabilirsiniz.


Bu site altında yer alan tüm kaynaklar Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.