Filtreler
##### Filtreler

Bulunan: 5 Adet 0.001 sn
######
Koleksiyon
[9]

######
Tam Metin
[2]

######
Yayın Türü
[1]

######
Yazar
[5]

######
Yayın Yılı
[2]

######
Konu Başlıkları
[12]

######
Yayıncı
[3]

######
Yayın Dili
[1]

######
Dergi Adı
[4]

#####
Araştırmacılar

Autapse-induced multiple coherence resonance in single neurons and neuronal networks
Enhancement of pacemaker induced stochastic resonance by an autapse in a scale-free neuronal network
Stochastic resonance in hybrid scale-free neuronal networks
Autaptic pacemaker mediated propagation of weak rhythmic activity across small-world neuronal networks
Noise-delayed decay in the response of a scale-free neuronal network

- Mühendislik Fakültesi 5
- Biyomedikal Mühendisliği Bölümü 5
- Elektrik - Elektronik Mühendisliği Bölümü 5
- Fakülteler 5
- Araştırma Çıktıları | WoS | Scopus | TR-Dizin | PubMed | SOBİAD 5
- Makale Koleksiyonu (Biyomedikal Mühendisliği Bölümü) 5
- Makale Koleksiyonu (Elektrik - Elektronik Mühendisliği Bölümü) 5
- Scopus İndeksli Yayınlar Koleksiyonu 5
- WoS İndeksli Yayınlar Koleksiyonu 5 Daha fazlası Daha az

Yılmaz, Ergin | Özer, Mahmut | Baysal, Veli | Perc, Matjaž

Article | 2016 | Scientific Reports6

We study the effects of electrical and chemical autapse on the temporal coherence or firing regularity of single stochastic Hodgkin-Huxley neurons and scale-free neuronal networks. Also, we study the effects of chemical autapse on the occurrence of spatial synchronization in scale-free neuronal networks. Irrespective of the type of autapse, we observe autaptic time delay induced multiple coherence resonance for appropriately tuned autaptic conductance levels in single neurons. More precisely, we show that in the presence of an electrical autapse, there is an optimal intensity of channel noise inducing the multiple coherence resonanc . . .e, whereas in the presence of chemical autapse the occurrence of multiple coherence resonance is less sensitive to the channel noise intensity. At the network level, we find autaptic time delay induced multiple coherence resonance and synchronization transitions, occurring at approximately the same delay lengths. We show that these two phenomena can arise only at a specific range of the coupling strength, and that they can be observed independently of the average degree of the network. © The Author(s) 2016 Daha fazlası Daha az

Yılmaz, Ergin | Baysal, Veli | Perc, Matjaž | Özer, Mahmut

Article | 2016 | Science China Technological Sciences59 ( 3 ) , pp.364 - 370

An autapse is an unusual synapse that occurs between the axon and the soma of the same neuron. Mathematically, it can be described as a self-delayed feedback loop that is defined by a specific time-delay and the so-called autaptic coupling strength. Recently, the role and function of autapses within the nervous system has been studied extensively. Here, we extend the scope of theoretical research by investigating the effects of an autapse on the transmission of a weak localized pacemaker activity in a scale-free neuronal network. Our results reveal that by mediating the spiking activity of the pacemaker neuron, an autapse increases . . .the propagation of its rhythm across the whole network, if only the autaptic time delay and the autaptic coupling strength are properly adjusted. We show that the autapse-induced enhancement of the transmission of pacemaker activity occurs only when the autaptic time delay is close to an integer multiple of the intrinsic oscillation time of the neurons that form the network. In particular, we demonstrate the emergence of multiple resonances involving the weak signal, the intrinsic oscillations, and the time scale that is dictated by the autapse. Interestingly, we also show that the enhancement of the pacemaker rhythm across the network is the strongest if the degree of the pacemaker neuron is lowest. This is because the dissipation of the localized rhythm is contained to the few directly linked neurons, and only afterwards, through the secondary neurons, it propagates further. If the pacemaker neuron has a high degree, then its rhythm is simply too weak to excite all the neighboring neurons, and propagation therefore fails. © 2016, Science China Press and Springer-Verlag Berlin Heidelberg Daha fazlası Daha az

Yılmaz, Ergin | Uzuntarla, Muhammet | Özer, Mahmut | Perc, Matjaž

Article | 2013 | Physica A: Statistical Mechanics and its Applications392 ( 22 ) , pp.5735 - 5741

We study the phenomenon of stochastic resonance in a system of coupled neurons that are globally excited by a weak periodic input signal. We make the realistic assumption that the chemical and electrical synapses interact in the same neuronal network, hence constituting a hybrid network. By considering a hybrid coupling scheme embedded in the scale-free topology, we show that the electrical synapses are more efficient than chemical synapses in promoting the best correlation between the weak input signal and the response of the system. We also demonstrate that the average degree of neurons within the hybrid scale-free network signifi . . .cantly influences the optimal amount of noise for the occurrence of stochastic resonance, indicating that there also exists an optimal topology for the amplification of the response to the weak input signal. Lastly, we verify that the presented results are robust to variations of the system size. © 2013 Elsevier B.V. All rights reserved Daha fazlası Daha az

Yılmaz, Ergin | Baysal, Veli | Özer, Mahmut | Perc, Matjaž

Article | 2016 | Physica A: Statistical Mechanics and its Applications444 , pp.538 - 546

We study the effects of an autapse, which is mathematically described as a self-feedback loop, on the propagation of weak, localized pacemaker activity across a Newman-Watts small-world network consisting of stochastic Hodgkin-Huxley neurons. We consider that only the pacemaker neuron, which is stimulated by a subthreshold periodic signal, has an electrical autapse that is characterized by a coupling strength and a delay time. We focus on the impact of the coupling strength, the network structure, the properties of the weak periodic stimulus, and the properties of the autapse on the transmission of localized pacemaker activity. Obta . . .ined results indicate the existence of optimal channel noise intensity for the propagation of the localized rhythm. Under optimal conditions, the autapse can significantly improve the propagation of pacemaker activity, but only for a specific range of the autaptic coupling strength. Moreover, the autaptic delay time has to be equal to the intrinsic oscillation period of the Hodgkin-Huxley neuron or its integer multiples. We analyze the inter-spike interval histogram and show that the autapse enhances or suppresses the propagation of the localized rhythm by increasing or decreasing the phase locking between the spiking of the pacemaker neuron and the weak periodic signal. In particular, when the autaptic delay time is equal to the intrinsic period of oscillations an optimal phase locking takes place, resulting in a dominant time scale of the spiking activity. We also investigate the effects of the network structure and the coupling strength on the propagation of pacemaker activity. We find that there exist an optimal coupling strength and an optimal network structure that together warrant an optimal propagation of the localized rhythm. © 2015 Elsevier B.V. All rights reserved Daha fazlası Daha az

Uzuntarla, Muhammet | Uzun, Rukiye | Yılmaz, Ergin | Özer, Mahmut | Perc, Matjaž

Article | 2013 | Chaos, Solitons and Fractals56 , pp.202 - 208

Noise-delayed decay occurs when the first-spike latency of a periodically forced neuron exhibits a maximum at particular noise intensity. Here we investigate this phenomenon at the network level, in particular by considering scale-free neuronal networks, and under the realistic assumption of noise being due to the stochastic nature of voltage-gated ion channels that are embedded in the neuronal membranes. We show that noise-delayed decay can be observed at the network level, but only if the synaptic coupling strength between the neurons is weak. In case of strong coupling or in a highly interconnected population the phenomenon vanis . . .hes, thus indicating that delays in signal detection can no longer be resonantly prolonged by noise. We also find that potassium channel noise plays a more dominant role in the occurrence of noise-delayed decay than sodium channel noise, and that poisoning the neuronal membranes may weakens or intensify the phenomenon depending on targeting. © 2013 Elsevier Ltd. All rights reserved Daha fazlası Daha az

6698 sayılı Kişisel Verilerin Korunması Kanunu kapsamında yükümlülüklerimiz ve çerez politikamız hakkında bilgi sahibi olmak için alttaki bağlantıyı kullanabilirsiniz.

Tamam
Açık Erişim Yönergesi

Bu site altında yer alan tüm kaynaklar Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.