Filtreler
Filtreler
Bulunan: 6 Adet 0.000 sn
Koleksiyon [18]
Tam Metin [2]
Yayın Türü [2]
Yazar [7]
Yayın Yılı [3]
Konu Başlıkları [20]
Yayıncı [2]
Yayın Dili [2]
Dergi Adı [5]
Araştırmacılar
Classification of refractive disorders from electrooculogram (EOG) signals by using data mining techniques

Kaya, Ceren | Erkaymaz, Okan | Ayar, Orhan | Özer, Mahmut

Proceedings | 2018 | 26th IEEE Signal Processing and Communications Applications Conference, SIU 2018 , pp.1 - 4

Refractive disorders are common health problems in the community and they are the most important cause of visual impairment. In this study, it was aimed to classify the individuals who have hypermetropia and myopia refractive disorders or not. For this, horizontal and vertical Electrooculogram (EOG) signal data from the right and left eyes of the individuals were used. The performance of the data was investigated by using Logistic Regression (LR), Naive Bayes (NB), Random Forest (RF) and REP Tree (RT) data mining methods. According to the obtained results, REP Tree method has shown the most successful classification performance to d . . .etect hypermetropia and myopia refractive disorders from Electrooculogram (EOG) signals. © 2018 IEEE Daha fazlası Daha az

Classification of diabetic retinopathy disease from Video-Oculography (VOG) signals with feature selection based on C4.5 decision tree

Kaya, Ceren | Erkaymaz, Okan | Ayar, Orhan | Özer, Mahmut

Proceedings | 2017 | 2017 Medical Technologies National Conference, TIPTEKNO 20172017-January , pp.1 - 4

'Diabetes Mellitus (Diabetes)' is a disease based on insulin hormone disorders secreted from the pancreas gland. Clinical findings find out that diabetes causes some diseases in vital organs. 'Diabetic Retinopathy' is one of the most common eye diseases based on diabetes, and it is the leading cause of visual loss resulting from structural changes in the retinal vessels. Recent researches show that signals from vital organs can be used to diagnose diseases in the literature. In this study, the features of horizontal and vertical Video-Oculography (VOG) signals from right and left eye are used to classify non-proliferative and prolif . . .erative diabetic retinopathy disease. 25 statistical features are obtained using discrete wavelet transform with VOG signals from 24 subjects. Feature selection is performed using C4.5 decision tree algorithm from 25 features obtained. The statistical features obtained from C4.5 decision tree and discrete wavelet transform are applied as input to artificial neural networks and the classification performance of the 'Diabetic Retinopathy' disease are compared according to these two methods. Our results show that feature selection by C4.5 decision tree algorithm (96.87%) provides better classification performance than feature extraction with discrete wavelet transform (93.75%). © 2017 IEEE Daha fazlası Daha az

The prediction of photovoltaic module temperature with artificial neural networks

Ceylan, İlhan | Erkaymaz, Okan | Gedik, Engin | Gürel, Ali Etem

Article | 2014 | Case Studies in Thermal Engineering3 , pp.11 - 20

In this study, photovoltaic module temperature has been predicted according to outlet air temperature and solar radiation. For this investigation, photovoltaic module temperatures have been determined in the experimental system for 10, 20, 30, and 40 °C ambient air temperature and different solar radiations. This experimental study was made in open air and solar radiation was measured and then this measured data was used for the training of ANN. Photovoltaic module temperatures have been predicted according to solar radiation and outside air temperature for the Aegean region in Turkey. Electrical efficiency and power was also calcul . . .ated depending on the predicted module temperature. Kutahya, U§ak and Afyon are the most suitable cities in terms of electrical efficiency and power product in the Aegean region in Turkey Daha fazlası Daha az

Classification of cervical cancer data and the effect of random subspace algorithms on classification performance

Erkaymaz, Okan | Palabaş, Tuğba

Proceedings | 2018 | 26th IEEE Signal Processing and Communications Applications Conference, SIU 2018 , pp.1 - 4

Computer assisted automatic diagnostic systems are used for the purpose of speeding up diagnosis and treatment and helping to make the right decision. In this study, cervical cancer is identified using four basic classifiers: Naive Bayes (NB), k-Nearest Neighbor (kNN), Multilayer Perceptron (MLP) and Decision Trees (KA-C4.5) algorithms and random subspaces ensemble algorithm. Gain Ratio Attribute Evaluation (GRAE) feature extraction algorithm is applied to contribute to classification performance. The classification results obtained with all datasets and reduced datasets are compared with respect to performance criteria such as accu . . .racy, Root Mean Square Error (RMSE), Sensitivity, Specificity performance criteria. According to the obtained performance analysis, it is seen that the classification performance with the random subspace ensemble algorithm using the kNN basic classifier on the reduced data set is the highest (%95.51). © 2018 IEEE Daha fazlası Daha az

Impact of hybrid neural network on the early diagnosis of diabetic retinopathy disease from video-oculography signals

Kaya, Ceren | Erkaymaz, Okan | Ayar, Orhan | Özer, Mahmut

Article | 2018 | Chaos, Solitons and Fractals114 , pp.164 - 174

In this study, we introduce two hybrid artificial neural network models with particle swarm optimization algorithm to diagnose diabetic retinopathy based on the Video-Oculography signals. The hybrid models use Discrete Wavelet Transform and Hilbert-Huang Transform separately to extract features from the signals. The classification performance of both models is analyzed comparatively. We show that the model based on Hilbert–Huang Transform exhibits better classification performance than the model based on the Discrete Wavelet Transform. © 2018 Elsevier Ltd

Determination of the physiological effects of diabetic retinopathy disease from Video-Oculography (VOG) signals using discrete wavelet transform

Kaya, Ceren | Erkaymaz, Okan | Ayar, Orhan | Özer, Mahmut

Proceedings | 2017 | 2016 Medical Technologies National Conference, TIPTEKNO 2016 , pp.164 - 174

The insulin hormone secreted from the pancreas gland in the body is not present in sufficient amount, or because they do not fit, which is defined as the elevation of blood glucose 'Diabetes Mellitus (Diabetes)'. 'Diabetic Retinopathy' is the most common in diabetes-related eye diseases. It had done damages in the retina that detect light on behind the eye as a result of changes in the arteries that is one of the reasons that makes blindness (loss of vision) in people. In this study, horizontal and vertical Video-Oculography (VOG) signals captured by using internal tracking camera in Metrovision MonPackOne Electrooculography device. . . . In order to filter the noise from the signals, the wavelet transform method was used. Obtained signals have shown that the signals of diabetic retinopathy patients have higher amplitude and irregular characteristic than the signals obtained from healthy groups. In both groups, significant Daubechies-6 wavelet coefficients (A6-D6) gave better results than Daubechies-4 wavelet coefficients (A4-D4). Obtained data as a result of using wavelet transform sheds light on feature extraction and classification in proposed future works. © 2016 IEEE Daha fazlası Daha az


6698 sayılı Kişisel Verilerin Korunması Kanunu kapsamında yükümlülüklerimiz ve çerez politikamız hakkında bilgi sahibi olmak için alttaki bağlantıyı kullanabilirsiniz.


Bu site altında yer alan tüm kaynaklar Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.