Filtreler
Araştırmacılar
The role of ion channel blocking on synchronization-induced termination in excitatory neuronal networks

Palabaş, Tuğba | Gürleyen, Hatice Hilal | Uzuntarla, Muhammet

Proceedings | 2019 | TIPTEKNO 2019 - Tip Teknolojileri Kongresi

It is known that activity is terminated abruptly as a result of strong synchronization in bistable neuron populations when there is sufficient current stimulation. The aim of this study is to investigate the effect of ion channel blocking on the phenomenon of spontaneous termination of ongoing activity in the bistable neural network connected by excitatory chemical synapses using stochastic Hodgkin-Huxley (H-H) equations. The obtained results show that significant changes in the dynamics of neurons occur due to the blocking of potassium ion channels at different rates depending on the coupling strength. As the coupling of synaptic i . . .nteraction increases, the synchronization between neurons increases and the activity terminates. Simulation results showed that sodium ion channels are not effective on this phenomenon. © 2019 IEEE Daha fazlası Daha az

Vibrational resonance in a scale-free network with different coupling schemes

Ağaoğlu, Şükrüye Nihal | Çalım, Ali | Hövel, Philipp | Özer, Mahmut | Uzuntarla, Muhammet

Article | 2019 | Neurocomputing325 , pp.59 - 66

We investigate the phenomenon of vibrational resonance (VR) in neural populations, whereby weak low-frequency signals below the excitability threshold can be detected with the help of additional high-frequency driving. The considered dynamical elements consist of excitable FitzHugh–Nagumo neurons connected by electrical gap junctions and chemical synapses. The VR performance of these populations is studied in unweighted and weighted scale-free networks. We find that although the characteristic network features – coupling strength and average degree – do not dramatically affect the signal detection quality in unweighted electrically . . .coupled neural populations, they have a strong influence on the required energy level of the high-frequency driving force. On the other hand, we observe that unweighted chemically coupled populations exhibit the opposite behavior, and the VR performance is significantly affected by these network features whereas the required energy remains on a comparable level. Furthermore, we show that the observed VR performance for unweighted networks can be either enhanced or worsened by degree-dependent coupling weights depending on the amount of heterogeneity. © 2018 Elsevier B.V Daha fazlası Daha az


6698 sayılı Kişisel Verilerin Korunması Kanunu kapsamında yükümlülüklerimiz ve çerez politikamız hakkında bilgi sahibi olmak için alttaki bağlantıyı kullanabilirsiniz.


Bu site altında yer alan tüm kaynaklar Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.