Bulunan: 71 Adet 0.001 sn
Koleksiyon [20]
Tam Metin [2]
Yayın Türü [4]
Yazar [20]
Yayın Yılı [9]
Konu Başlıkları [20]
Yayıncı [20]
Yayın Dili [2]
Dergi Adı [20]
Inverse stochastic resonance induced by synaptic background activity with unreliable synapses

Uzuntarla, Muhammet

Article | 2013 | Physics Letters, Section A: General, Atomic and Solid State Physics377 ( 38 ) , pp.2585 - 2589

Inverse stochastic resonance (ISR) is a recently pronounced phenomenon that is the minimum occurrence in mean firing rate of a rhythmically firing neuron as noise level varies. Here, by using a realistic modeling approach for the noise, we investigate the ISR with concrete biophysical mechanisms. It is shown that mean firing rate of a single neuron subjected to synaptic bombardment exhibits a minimum as the spike transmission probability varies. We also demonstrate that the occurrence of ISR strongly depends on the synaptic input regime, where it is most prominent in the balanced state of excitatory and inhibitory inputs. © 2013 Els . . .evier B.V Daha fazlası Daha az

Comprehensive and quantitative profiling of lipid molecular species by LC-ESI-MS/MS of four native species from semiarid Patagonian Monte

Cenzano, Ana M. | Arslan, İdris

Article | 2020 | Plant Physiology and Biochemistry146 , pp.447 - 456

The maintenance of lipid and fatty acids unsaturated composition has been described as one of the mechanisms associated to drought tolerance, but research about the lipid profile in native plants of semiarid environment is still limited. The primary objective was to study whether lipid profiles correlates with drought resistance strategies (tolerant or avoidant) of two life forms (shrubs and grasses). The lipid classes and molecular species of green leaves of Larrea divaricata and Lycium chilense shrubs and Pappostipa speciosa and Poa ligularis grasses were determined using LC–ESI-MS/MS. The soil water content was very low during sp . . .ring and leaf relative water content was between 47 and 74% in the four species. Lipid profiling was different between both life forms. The prevalent compounds were digalactosyldiacylglycerol (DGDG), monogalactosyldiacylglycerol (MGDG) and phosphatidic acid (PA). The lipid signature shows that L. divaricata adjust its lipid composition to tolerate drought, increasing the content of: a) total lipids and total phospholipids, b) structural phospholipids (36:4 and 36:2-PC, phosphatidylcholine; 36:4-PE, phosphatidylethanolamine), c) chloroplast and mitochondria lipids (32:1 and 32:0-PG, phosphatidylglycerol; 34:3, 36:6 and 36:3-DGDG), d) signaling lipids (34:3, 34:2 and 36:5-PA and PI, phosphatidylinositol), and e) polyunsaturated fatty acids (PUFAs, 18:3 and 18:2) and long chain polyunsaturated fatty acids (LC-PUFAs, in 40:2 and 42:2-PS, phosphatidylserine). This membrane lipid composition contributes to membrane stabilization as metabolic-functional strategy for drought tolerance in the Patagonian Monte. In addition, the 18:3 present in lipids of both grasses could be incorporated to lamb fed based on pastures and result healthy for human dietary. © 201 Daha fazlası Daha az

Controlling the first-spike latency response of a single neuron via unreliable synaptic transmission

Uzuntarla, Muhammet | Özer, Mahmut | Guo D.Q.

Article | 2012 | European Physical Journal B85 ( 8 ) , pp.447 - 456

Previous experimental and theoretical studies suggest that first-spike latency is an efficient information carrier and may contain more amounts of neural information than those of other spikes. Therefore, the biophysical mechanisms underlying the first-spike response latency are of considerable interest. Here we present a systematical investigation on the response latency dynamics of a single Hodgkin-Huxley neuron subject to both a suprathreshold periodic forcing and background activity. In contrast to most earlier works, we consider a biophysically realistic noise model which allows us to relate the synaptic background activity to . . .unreliable synapses and latency. Our results show that first-spike latency of a neuron can be regulated via unreliable synapses. An intermediate level of successful synaptic transmission probability significantly increases both the latency and its jitter, indicating that the unreliable synaptic transmission constrains the signal detection ability of neurons. Furthermore, we demonstrate that the destructive influence of synaptic unreliability can be controlled by the input regime and by the excitatory coupling strength. Better tuning of these two factors could help the H-H neuron encode information more accurately in terms of the first-spike latency. © 2012 EDP Sciences, Società Italiana di Fisica, Springer-Verlag Daha fazlası Daha az

Inverse stochastic resonance in networks of spiking neurons

Uzuntarla, Muhammet | Barreto, Ernest | Torres, Joaquin J.

Article | 2017 | PLoS Computational Biology13 ( 7 ) , pp.447 - 456

Inverse Stochastic Resonance (ISR) is a phenomenon in which the average spiking rate of a neuron exhibits a minimum with respect to noise. ISR has been studied in individual neurons, but here, we investigate ISR in scale-free networks, where the average spiking rate is calculated over the neuronal population. We use Hodgkin-Huxley model neurons with channel noise (i.e., stochastic gating variable dynamics), and the network connectivity is implemented via electrical or chemical connections (i.e., gap junctions or excitatory/inhibitory synapses). We find that the emergence of ISR depends on the interplay between each neuron’s intrinsi . . .c dynamical structure, channel noise, and network inputs, where the latter in turn depend on network structure parameters. We observe that with weak gap junction or excitatory synaptic coupling, network heterogeneity and sparseness tend to favor the emergence of ISR. With inhibitory coupling, ISR is quite robust. We also identify dynamical mechanisms that underlie various features of this ISR behavior. Our results suggest possible ways of experimentally observing ISR in actual neuronal systems. © 2017 Uzuntarla et al Daha fazlası Daha az

Double inverse stochastic resonance with dynamic synapses

Uzuntarla, Muhammet | Torres, Joaquin J. | So, Paul | Özer, Mahmut | Barreto, Ernest

Article | 2017 | Physical Review E95 ( 1 ) , pp.447 - 456

We investigate the behavior of a model neuron that receives a biophysically realistic noisy postsynaptic current based on uncorrelated spiking activity from a large number of afferents. We show that, with static synapses, such noise can give rise to inverse stochastic resonance (ISR) as a function of the presynaptic firing rate. We compare this to the case with dynamic synapses that feature short-term synaptic plasticity and show that the interval of presynaptic firing rate over which ISR exists can be extended or diminished. We consider both short-term depression and facilitation. Interestingly, we find that a double inverse stocha . . .stic resonance (DISR), with two distinct wells centered at different presynaptic firing rates, can appear. © 2017 American Physical Society Daha fazlası Daha az

Advances in renewable energy and energy efficiency technologies Preface

Çavdar, İsmail Hakkı | Suljanovic, Nermin | Uzuntarla, Muhammet


WOS: 000365508200001

Simulation of Parkinsonian Basal nuclei with network motifs

Çalım, Ali | Özer, Mahmut | Uzuntarla, Muhammet

Proceedings | 2017 | 2017 25th Signal Processing and Communications Applications Conference, SIU 2017 , pp.447 - 456

Nowadays, neurodegenerative diseases which affect human life quite negatively with motor, cognitive and psychiatric disorders are becoming widespread. One of the most common neurodegenerative disorder is Parkinson's disease. Recent electrophysiological experiments have shown that Basal Ganglia, a special region in the midbrain, is related to Parkinsonism. Beta frequency oscillations, which are important symptoms of Parkinson's disease, emerge intensively in Globus Pallidus and Subtalamus nuclei. In this study, anatomical connections of Globus Pallidus and Subtalamus are constructed computationally, and the cellular properties that g . . .ive rise to emergence of beta oscillations are investigated. © 2017 IEEE Daha fazlası Daha az

Noise-delayed decay in the response of a scale-free neuronal network

Uzuntarla, Muhammet | Uzun, Rukiye | Yılmaz, Ergin | Özer, Mahmut | Perc, Matjaž

Article | 2013 | Chaos, Solitons and Fractals56 , pp.202 - 208

Noise-delayed decay occurs when the first-spike latency of a periodically forced neuron exhibits a maximum at particular noise intensity. Here we investigate this phenomenon at the network level, in particular by considering scale-free neuronal networks, and under the realistic assumption of noise being due to the stochastic nature of voltage-gated ion channels that are embedded in the neuronal membranes. We show that noise-delayed decay can be observed at the network level, but only if the synaptic coupling strength between the neurons is weak. In case of strong coupling or in a highly interconnected population the phenomenon vanis . . .hes, thus indicating that delays in signal detection can no longer be resonantly prolonged by noise. We also find that potassium channel noise plays a more dominant role in the occurrence of noise-delayed decay than sodium channel noise, and that poisoning the neuronal membranes may weakens or intensify the phenomenon depending on targeting. © 2013 Elsevier Ltd. All rights reserved Daha fazlası Daha az

Effects of inhibitory autapse on the weak signal detection of Hodgkin-Huxley Neuron

Baysal, Veli | Özer, Mahmut | Yılmaz, Ergin

Proceedings | 2017 | 2017 Medical Technologies National Conference, TIPTEKNO 20172017-January , pp.1 - 4

In this paper, the effects of autapse (a kind of synapse formed between the axon or soma of a neuron and its own dendrites) on the weak signal detection capacity of a Hodgkin-Huxley (H-H) neuron are investigated. In the study, we consider that the H-H neuron has an inhibitory autapse modeled as a chemical synapse. The subthreshold sine wave is injected to the H-H neuron as a weak signal. Obtained results indicate that inhibitory autapse prominently increases the weak signal detection capacity of a H-H neuron when the proper autaptic time delay and autaptic conductance values are choosen. © 2017 IEEE.

Vibrational resonance in a Hodgkin-Huxley neuron under electromagnetic induction

Baysal, Veli | Yılmaz, Ergin

Proceedings | 2018 | 26th IEEE Signal Processing and Communications Applications Conference, SIU 2018 , pp.1 - 4

In this paper, effects of electromagnetic induction on vibrational resonance phenomenon in a Hodgkin-Huxley neuron are investigated. By stimulating Hodgkin-Huxley neuron with both high-frequency signal and low-frequency weak signal, its weak signal detection capacity have been investigated under electromagnetic induction effect. Obtained results show that electromagnetic induction causes decreasing of the amplitude of vibrational resonance effect emerging depending on the amplitude of high frequency signal. Also, vibrational resonance phenomenon occurs at smaller amplitudes of high frequency signal in Hodgkin-Huxley neuron which is . . .under electromagnetic induction effect. Finally, it is found that the best detection of the weak signal in a Hodgkin-Huxley neuron under electromagnetic induction effect is realized under an optimal electromagnetic current intensity. © 2018 IEEE Daha fazlası Daha az

Effects of astrocytes on neuronal dynamics

Erkan, Yasemin | Özer, Mahmut | Yılmaz, Ergin

Proceedings | 2017 | 2017 Medical Technologies National Conference, TIPTEKNO 20172017-January , pp.1 - 4

Astrocytes are star-shaped glia cells and the most common cell type in the human brain with neurons. Astrocytes fulfill many functions in human brain. Providing support to the cells of the blood-brain barrier, balancing the extracellular ion concentration, supplying nutrients to the nerve tissue, and controlling the development of nerve cells are some of these tasks. In this study, the effects of calcium (Ca2+) ion concentration oscillations occuring in astrocytes on the neuron firing dynamics are investigated. When the obtained results are examined, it is observed that the production rate of insole 1,4,5-Triphosphate (IP3), which i . . .s an agent that triggers calcium release from the resoruces in astrocytes, and the degradation time of that within the cell are important effects on the spike production dynamics of the neuron in contact with astrocyte. It is determined that neurons without any stimulation continue to produce spikes through calcium oscillations in the astrocytes, at high IP3 production rates and longer IP3 degradation times. © 2017 IEEE Daha fazlası Daha az

Impact of time-periodic coupling strength on the firing regularity of a scale-free network

Baysal, Veli | Yılmaz, Ergin | Özer, Mahmut

Proceedings | 2014 | 2014 22nd Signal Processing and Communications Applications Conference, SIU 2014 - Proceedings , pp.1958 - 1961

In this paper, the effects of time-periodic coupling on the firing regularity of a scale-free network (SF), consisting of stochastic Hodgkin-Huxley neurons, have been investigated depending on ion channel noise. The effects of both the frequency and the amplitude of periodic coupling on the firing regularity have been tackled, separately. It is seen from the obtained results that the firing (spiking) regularity shows resonance like behavior depending on ion channel noise when the frequency of the periodic coupling equals integer multiple of the sub threshold oscillation frequency of H-H neurons. Additionally, it is determined that t . . .his resonance is maximal at an optimal value of the amplitude of the periodic coupling strength. © 2014 IEEE Daha fazlası Daha az

6698 sayılı Kişisel Verilerin Korunması Kanunu kapsamında yükümlülüklerimiz ve çerez politikamız hakkında bilgi sahibi olmak için alttaki bağlantıyı kullanabilirsiniz.

Bu site altında yer alan tüm kaynaklar Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.