Filtreler
Classification of refractive disorders from electrooculogram (EOG) signals by using data mining techniques

Kaya, Ceren | Erkaymaz, Okan | Ayar, Orhan | Özer, Mahmut

Proceedings | 2018 | 26th IEEE Signal Processing and Communications Applications Conference, SIU 2018 , pp.1 - 4

Refractive disorders are common health problems in the community and they are the most important cause of visual impairment. In this study, it was aimed to classify the individuals who have hypermetropia and myopia refractive disorders or not. For this, horizontal and vertical Electrooculogram (EOG) signal data from the right and left eyes of the individuals were used. The performance of the data was investigated by using Logistic Regression (LR), Naive Bayes (NB), Random Forest (RF) and REP Tree (RT) data mining methods. According to the obtained results, REP Tree method has shown the most successful classification performance to d . . .etect hypermetropia and myopia refractive disorders from Electrooculogram (EOG) signals. © 2018 IEEE Daha fazlası Daha az

6698 sayılı Kişisel Verilerin Korunması Kanunu kapsamında yükümlülüklerimiz ve çerez politikamız hakkında bilgi sahibi olmak için alttaki bağlantıyı kullanabilirsiniz.

creativecommons
Bu site altında yer alan tüm kaynaklar Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.
Platforms