Baysal, Veli | Yılmaz, Ergin
Article | 2020 | Physica A: Statistical Mechanics and its Applications537
In this paper, Vibrational Resonance (VR), in which the response of some dynamical systems to a weak, low frequency signal can be enhanced by the optimal amplitude of high frequency signal, is investigated under the effects of electromagnetic induction in both single neurons and small-world networks. We find that the occurrence of VR in single neurons requires less energy in the presence of electromagnetic induction, although the resonant peak of the response reduces. Besides, VR can be obtained in small-world networks both with and without electromagnetic induction. In small-world neuronal networks, the highest resonance peak of VR . . . enhances with an increase in the probability of adding link in case of without electromagnetic induction. On the other hand, with the increasing of the probability of adding link, VR disappears in the presence of relatively strong electromagnetic induction, while it enhances in the presence of relatively weak electromagnetic induction. © 2019 Elsevier B.V Daha fazlası Daha az
Akbuğday, Burak | Yılmaz, Ergin
Proceedings | 2019 | TIPTEKNO 2019 - Tip Teknolojileri Kongresi
Obstructive sleep apnea defined as a medical condition caused by loss of muscle tone in upper airway dilator muscles. There are various treatment methods exist for this condition both invasive and non-invasive, but they all have their weaknesses and strengths. Electrical stimulation method seems to be the most promising non-invasive method in terms of efficiency and adherence rate. This study introduces a low-cost, easy-to-use and wireless novel device to treat obstructive sleep apnea based on electrical stimulation method. The developed device uses an accelerometer to track respiration and apnea episodes and when an apnea episode i . . .s detected delivers a small electric current to dilator muscles to make them regain their muscle tone, thus treating obstructive sleep apnea. The device also communicates with a smartphone application to keep a recording of respiration and apnea data to enable further studying of data by medical professionals and researchers. © 2019 IEEE Daha fazlası Daha az
Palabaş, Tuğba | Gürleyen, Hatice Hilal | Uzuntarla, Muhammet
Proceedings | 2019 | TIPTEKNO 2019 - Tip Teknolojileri Kongresi
It is known that activity is terminated abruptly as a result of strong synchronization in bistable neuron populations when there is sufficient current stimulation. The aim of this study is to investigate the effect of ion channel blocking on the phenomenon of spontaneous termination of ongoing activity in the bistable neural network connected by excitatory chemical synapses using stochastic Hodgkin-Huxley (H-H) equations. The obtained results show that significant changes in the dynamics of neurons occur due to the blocking of potassium ion channels at different rates depending on the coupling strength. As the coupling of synaptic i . . .nteraction increases, the synchronization between neurons increases and the activity terminates. Simulation results showed that sodium ion channels are not effective on this phenomenon. © 2019 IEEE Daha fazlası Daha az
Çilli, Salih | Çalım, Ali | Uzuntarla, Muhammet
Proceedings | 2019 | TIPTEKNO 2019 - Tip Teknolojileri Kongresi
Vital functions in living organisms occur through changes in electrical activity. These activities consist of brain rhythms with different frequencies that exhibit oscillatory behavior and can be monitored by local field potentials or EEG recordings. The synchronization of neural activity underlies the emergence of these rhythmic waves, which are of great importance in the nervous system. In this study, the effects of changes in intrinsic mechanisms and intercellular communication, that are constituting neural activity, on the synchronization of neuron pair which is composed of two nerve cells and connected with different types of s . . .ynaptic junction were investigated in a biologically meaningful way. The obtained results showed that the excitability, synaptic and ionic conductivity levels are crucial for neurons to synchronize. It has also been found that the noise caused by the stochastic nature of the ion channels is an auxiliary biological component to achieve synchronization. © 2019 IEEE Daha fazlası Daha az