Bulunan: 38 Adet 0.001 sn
Koleksiyon [20]
Tam Metin [2]
Yayın Türü [2]
Yazar [20]
Yayın Yılı [9]
Konu Başlıkları [20]
Yayıncı [17]
Yayın Dili [1]
Dergi Adı [20]
Inverse stochastic resonance induced by synaptic background activity with unreliable synapses

Uzuntarla, Muhammet

Article | 2013 | Physics Letters, Section A: General, Atomic and Solid State Physics377 ( 38 ) , pp.2585 - 2589

Inverse stochastic resonance (ISR) is a recently pronounced phenomenon that is the minimum occurrence in mean firing rate of a rhythmically firing neuron as noise level varies. Here, by using a realistic modeling approach for the noise, we investigate the ISR with concrete biophysical mechanisms. It is shown that mean firing rate of a single neuron subjected to synaptic bombardment exhibits a minimum as the spike transmission probability varies. We also demonstrate that the occurrence of ISR strongly depends on the synaptic input regime, where it is most prominent in the balanced state of excitatory and inhibitory inputs. © 2013 Els . . .evier B.V Daha fazlası Daha az

Comprehensive and quantitative profiling of lipid molecular species by LC-ESI-MS/MS of four native species from semiarid Patagonian Monte

Cenzano, Ana M. | Arslan, İdris

Article | 2020 | Plant Physiology and Biochemistry146 , pp.447 - 456

The maintenance of lipid and fatty acids unsaturated composition has been described as one of the mechanisms associated to drought tolerance, but research about the lipid profile in native plants of semiarid environment is still limited. The primary objective was to study whether lipid profiles correlates with drought resistance strategies (tolerant or avoidant) of two life forms (shrubs and grasses). The lipid classes and molecular species of green leaves of Larrea divaricata and Lycium chilense shrubs and Pappostipa speciosa and Poa ligularis grasses were determined using LC–ESI-MS/MS. The soil water content was very low during sp . . .ring and leaf relative water content was between 47 and 74% in the four species. Lipid profiling was different between both life forms. The prevalent compounds were digalactosyldiacylglycerol (DGDG), monogalactosyldiacylglycerol (MGDG) and phosphatidic acid (PA). The lipid signature shows that L. divaricata adjust its lipid composition to tolerate drought, increasing the content of: a) total lipids and total phospholipids, b) structural phospholipids (36:4 and 36:2-PC, phosphatidylcholine; 36:4-PE, phosphatidylethanolamine), c) chloroplast and mitochondria lipids (32:1 and 32:0-PG, phosphatidylglycerol; 34:3, 36:6 and 36:3-DGDG), d) signaling lipids (34:3, 34:2 and 36:5-PA and PI, phosphatidylinositol), and e) polyunsaturated fatty acids (PUFAs, 18:3 and 18:2) and long chain polyunsaturated fatty acids (LC-PUFAs, in 40:2 and 42:2-PS, phosphatidylserine). This membrane lipid composition contributes to membrane stabilization as metabolic-functional strategy for drought tolerance in the Patagonian Monte. In addition, the 18:3 present in lipids of both grasses could be incorporated to lamb fed based on pastures and result healthy for human dietary. © 201 Daha fazlası Daha az

Controlling the first-spike latency response of a single neuron via unreliable synaptic transmission

Uzuntarla, Muhammet | Özer, Mahmut | Guo D.Q.

Article | 2012 | European Physical Journal B85 ( 8 ) , pp.447 - 456

Previous experimental and theoretical studies suggest that first-spike latency is an efficient information carrier and may contain more amounts of neural information than those of other spikes. Therefore, the biophysical mechanisms underlying the first-spike response latency are of considerable interest. Here we present a systematical investigation on the response latency dynamics of a single Hodgkin-Huxley neuron subject to both a suprathreshold periodic forcing and background activity. In contrast to most earlier works, we consider a biophysically realistic noise model which allows us to relate the synaptic background activity to . . .unreliable synapses and latency. Our results show that first-spike latency of a neuron can be regulated via unreliable synapses. An intermediate level of successful synaptic transmission probability significantly increases both the latency and its jitter, indicating that the unreliable synaptic transmission constrains the signal detection ability of neurons. Furthermore, we demonstrate that the destructive influence of synaptic unreliability can be controlled by the input regime and by the excitatory coupling strength. Better tuning of these two factors could help the H-H neuron encode information more accurately in terms of the first-spike latency. © 2012 EDP Sciences, Società Italiana di Fisica, Springer-Verlag Daha fazlası Daha az

Inverse stochastic resonance in networks of spiking neurons

Uzuntarla, Muhammet | Barreto, Ernest | Torres, Joaquin J.

Article | 2017 | PLoS Computational Biology13 ( 7 ) , pp.447 - 456

Inverse Stochastic Resonance (ISR) is a phenomenon in which the average spiking rate of a neuron exhibits a minimum with respect to noise. ISR has been studied in individual neurons, but here, we investigate ISR in scale-free networks, where the average spiking rate is calculated over the neuronal population. We use Hodgkin-Huxley model neurons with channel noise (i.e., stochastic gating variable dynamics), and the network connectivity is implemented via electrical or chemical connections (i.e., gap junctions or excitatory/inhibitory synapses). We find that the emergence of ISR depends on the interplay between each neuron’s intrinsi . . .c dynamical structure, channel noise, and network inputs, where the latter in turn depend on network structure parameters. We observe that with weak gap junction or excitatory synaptic coupling, network heterogeneity and sparseness tend to favor the emergence of ISR. With inhibitory coupling, ISR is quite robust. We also identify dynamical mechanisms that underlie various features of this ISR behavior. Our results suggest possible ways of experimentally observing ISR in actual neuronal systems. © 2017 Uzuntarla et al Daha fazlası Daha az

Double inverse stochastic resonance with dynamic synapses

Uzuntarla, Muhammet | Torres, Joaquin J. | So, Paul | Özer, Mahmut | Barreto, Ernest

Article | 2017 | Physical Review E95 ( 1 ) , pp.447 - 456

We investigate the behavior of a model neuron that receives a biophysically realistic noisy postsynaptic current based on uncorrelated spiking activity from a large number of afferents. We show that, with static synapses, such noise can give rise to inverse stochastic resonance (ISR) as a function of the presynaptic firing rate. We compare this to the case with dynamic synapses that feature short-term synaptic plasticity and show that the interval of presynaptic firing rate over which ISR exists can be extended or diminished. We consider both short-term depression and facilitation. Interestingly, we find that a double inverse stocha . . .stic resonance (DISR), with two distinct wells centered at different presynaptic firing rates, can appear. © 2017 American Physical Society Daha fazlası Daha az

Advances in renewable energy and energy efficiency technologies Preface

Çavdar, İsmail Hakkı | Suljanovic, Nermin | Uzuntarla, Muhammet


WOS: 000365508200001

Noise-delayed decay in the response of a scale-free neuronal network

Uzuntarla, Muhammet | Uzun, Rukiye | Yılmaz, Ergin | Özer, Mahmut | Perc, Matjaž

Article | 2013 | Chaos, Solitons and Fractals56 , pp.202 - 208

Noise-delayed decay occurs when the first-spike latency of a periodically forced neuron exhibits a maximum at particular noise intensity. Here we investigate this phenomenon at the network level, in particular by considering scale-free neuronal networks, and under the realistic assumption of noise being due to the stochastic nature of voltage-gated ion channels that are embedded in the neuronal membranes. We show that noise-delayed decay can be observed at the network level, but only if the synaptic coupling strength between the neurons is weak. In case of strong coupling or in a highly interconnected population the phenomenon vanis . . .hes, thus indicating that delays in signal detection can no longer be resonantly prolonged by noise. We also find that potassium channel noise plays a more dominant role in the occurrence of noise-delayed decay than sodium channel noise, and that poisoning the neuronal membranes may weakens or intensify the phenomenon depending on targeting. © 2013 Elsevier Ltd. All rights reserved Daha fazlası Daha az

Enhancement of pacemaker induced stochastic resonance by an autapse in a scale-free neuronal network

Yılmaz, Ergin | Baysal, Veli | Perc, Matjaž | Özer, Mahmut

Article | 2016 | Science China Technological Sciences59 ( 3 ) , pp.364 - 370

An autapse is an unusual synapse that occurs between the axon and the soma of the same neuron. Mathematically, it can be described as a self-delayed feedback loop that is defined by a specific time-delay and the so-called autaptic coupling strength. Recently, the role and function of autapses within the nervous system has been studied extensively. Here, we extend the scope of theoretical research by investigating the effects of an autapse on the transmission of a weak localized pacemaker activity in a scale-free neuronal network. Our results reveal that by mediating the spiking activity of the pacemaker neuron, an autapse increases . . .the propagation of its rhythm across the whole network, if only the autaptic time delay and the autaptic coupling strength are properly adjusted. We show that the autapse-induced enhancement of the transmission of pacemaker activity occurs only when the autaptic time delay is close to an integer multiple of the intrinsic oscillation time of the neurons that form the network. In particular, we demonstrate the emergence of multiple resonances involving the weak signal, the intrinsic oscillations, and the time scale that is dictated by the autapse. Interestingly, we also show that the enhancement of the pacemaker rhythm across the network is the strongest if the degree of the pacemaker neuron is lowest. This is because the dissipation of the localized rhythm is contained to the few directly linked neurons, and only afterwards, through the secondary neurons, it propagates further. If the pacemaker neuron has a high degree, then its rhythm is simply too weak to excite all the neighboring neurons, and propagation therefore fails. © 2016, Science China Press and Springer-Verlag Berlin Heidelberg Daha fazlası Daha az

Chaotic resonance in Hodgkin-Huxley neuron

Baysal, Veli | Saraç, Zehra | Yılmaz, Ergin

Article | 2019 | NONLINEAR DYNAMICS97 ( 2 ) , pp.1275 - 1285

Chaotic Resonance (CR), whereby the response of a nonlinear system to a weak signal can be enhanced by the assistance of chaotic activities that can be intrinsic or extrinsic, has recently been studied widely. In this paper, the effects of extrinsic chaotic signal on the weak signal detection performance of the Hodgkin-Huxley neuron are examined via numerical simulation. The chaotic signal has been derived from Lorenz system and is injected to neuron as a current. Obtained results have revealed that the H-H neuron exhibits CR phenomenon depending on the chaotic current intensity. Also, we have found an optimal chaotic current intens . . .ity ensuring the best detection of the weak signal in H-H neuron via CR. In addition, we have calculated the maximal Lyapunov exponent to determine whether the H-H neuron is in chaotic regime. After determining the state of the neuron, we have shown that the H-H neuron can be able to detect the weak signal even if it is in the chaotic regime. Finally, we have investigated the effects of chaotic activity on the collective behavior of H-H neurons in small-world networks and have concluded that CR effect is a robust phenomenon which can be observed both in single neurons and neuronal networks Daha fazlası Daha az

Delayed feedback and detection of weak periodic signals in a stochastic Hodgkin-Huxley neuron

Yılmaz, Ergin | Özer, Mahmut

Article | 2015 | Physica A: Statistical Mechanics and its Applications421 , pp.455 - 462

We study the effect of the delayed feedback loop on the weak periodic signal detection performance of a stochastic Hodgkin-Huxley neuron. We consider an electrical autapse characterized by its coupling strength and delay time. The stochastic Hodgkin-Huxley neuron exhibits subthreshold oscillations, and thus has an intrinsic time scale with the subthreshold oscillations. Therefore, we investigate the interplay of the subthreshold oscillations, coupling strength and delay time on the weak periodic signal detection. Results indicate that the delayed feedback either enhances or suppresses the weak signal detection depending on its param . . .eters, when compared to that without the feedback. The delayed feedback augments the weak periodic signal detection for the optimal values of the intrinsic noise and the coupling strength when the delay time is close to the integer multiples of the period of the intrinsic oscillations, due to the multiple resonance among the weak signal, the intrinsic oscillations, and the delayed feedback. We analyze the interspike interval histograms and show that the delayed feedback enhances or suppresses the weak periodic signal detection by increasing or decreasing the phase locking (synchronization) between the spiking and the weak periodic signal. We also show that an optimal phase locking is obtained when the delay time is close to the period of the intrinsic oscillations, leading a single dominant time scale in the spike trains. © 2014 Elsevier B.V. All rights reserved Daha fazlası Daha az

Newly designed bioanode for glucose/O2 biofuel cells to generate renewable energy

Korkut, Şeyda | Kılıç, Muhammet Samet | Hazer, Baki

Article | 2019 | Asia-Pacific Journal of Chemical Engineering14 ( 6 ) , pp.455 - 462

A copolymer poly(methyl methacrylate-co-vinylferrocene) was synthesized and used for the first time in a biofuel cell design. Bioanaode enzyme glucose oxidase and biocathode enzyme bilirubin oxidase were physically immobilized onto the copolymer-modified electrodes. Characterization studies were conducted by scanning electron microscopy, carbon-13, fourier transform infrared and hydrogen-1 nuclear magnetic resonance, and cyclic voltammograms. The designed biofuel cell was operated with linear sweep voltammetry. The maximum current was at 45°C with 120 µg of polymer amount. An improved power density of 323 µW cm-2 that is higher than . . . other ferrocene-based fuel cells was obtained with 10-mM glucose at 0.4 V with the designed bioanode. © 2019 John Wiley & Sons Ltd Daha fazlası Daha az

Chimera states in networks of type-I Morris-Lecar neurons

Çalım, Ali | Hövel, Philipp | Özer, Mahmut | Uzuntarla, Muhammet

Article | 2018 | Physical Review E98 ( 6 ) , pp.455 - 462

Chimeras are complex spatiotemporal patterns that emerge as coexistence of both coherent and incoherent groups of coupled dynamical systems. Here, we investigate the emergence of chimera states in nonlocal networks of type-I Morris-Lecar neurons coupled via chemical synapses. This constitutes a more realistic neuronal modeling framework than previous studies of chimera states, since the Morris-Lecar model provides biophysically more relevant control parameters to describe the activity in actual neural systems. We explore systematically the transitions of dynamic behavior and find that different types of synchrony appear depending on . . . the excitability level and nonlocal network features. Furthermore, we map the transitions between incoherent states, traveling waves, chimeras, coherent states, and global amplitude death in the parameter space of interest. This work contributes to a better understanding of biological conditions giving rise to the emergence of chimera states in neural medium. © 2018 American Physical Society Daha fazlası Daha az

6698 sayılı Kişisel Verilerin Korunması Kanunu kapsamında yükümlülüklerimiz ve çerez politikamız hakkında bilgi sahibi olmak için alttaki bağlantıyı kullanabilirsiniz.

Bu site altında yer alan tüm kaynaklar Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.