Filtreler
Filtreler
Bulunan: 38 Adet 0.001 sn
Koleksiyon [20]
Tam Metin [2]
Yayın Türü [2]
Yazar [20]
Yayın Yılı [9]
Konu Başlıkları [20]
Yayıncı [17]
Yayın Dili [1]
Dergi Adı [20]
The prediction of photovoltaic module temperature with artificial neural networks

Ceylan, İlhan | Erkaymaz, Okan | Gedik, Engin | Gürel, Ali Etem

Article | 2014 | Case Studies in Thermal Engineering3 , pp.11 - 20

In this study, photovoltaic module temperature has been predicted according to outlet air temperature and solar radiation. For this investigation, photovoltaic module temperatures have been determined in the experimental system for 10, 20, 30, and 40 °C ambient air temperature and different solar radiations. This experimental study was made in open air and solar radiation was measured and then this measured data was used for the training of ANN. Photovoltaic module temperatures have been predicted according to solar radiation and outside air temperature for the Aegean region in Turkey. Electrical efficiency and power was also calcul . . .ated depending on the predicted module temperature. Kutahya, U§ak and Afyon are the most suitable cities in terms of electrical efficiency and power product in the Aegean region in Turkey Daha fazlası Daha az

Comprehensive and quantitative profiling of lipid molecular species by LC-ESI-MS/MS of four native species from semiarid Patagonian Monte

Cenzano, Ana M. | Arslan, İdris

Article | 2020 | Plant Physiology and Biochemistry146 , pp.447 - 456

The maintenance of lipid and fatty acids unsaturated composition has been described as one of the mechanisms associated to drought tolerance, but research about the lipid profile in native plants of semiarid environment is still limited. The primary objective was to study whether lipid profiles correlates with drought resistance strategies (tolerant or avoidant) of two life forms (shrubs and grasses). The lipid classes and molecular species of green leaves of Larrea divaricata and Lycium chilense shrubs and Pappostipa speciosa and Poa ligularis grasses were determined using LC–ESI-MS/MS. The soil water content was very low during sp . . .ring and leaf relative water content was between 47 and 74% in the four species. Lipid profiling was different between both life forms. The prevalent compounds were digalactosyldiacylglycerol (DGDG), monogalactosyldiacylglycerol (MGDG) and phosphatidic acid (PA). The lipid signature shows that L. divaricata adjust its lipid composition to tolerate drought, increasing the content of: a) total lipids and total phospholipids, b) structural phospholipids (36:4 and 36:2-PC, phosphatidylcholine; 36:4-PE, phosphatidylethanolamine), c) chloroplast and mitochondria lipids (32:1 and 32:0-PG, phosphatidylglycerol; 34:3, 36:6 and 36:3-DGDG), d) signaling lipids (34:3, 34:2 and 36:5-PA and PI, phosphatidylinositol), and e) polyunsaturated fatty acids (PUFAs, 18:3 and 18:2) and long chain polyunsaturated fatty acids (LC-PUFAs, in 40:2 and 42:2-PS, phosphatidylserine). This membrane lipid composition contributes to membrane stabilization as metabolic-functional strategy for drought tolerance in the Patagonian Monte. In addition, the 18:3 present in lipids of both grasses could be incorporated to lamb fed based on pastures and result healthy for human dietary. © 201 Daha fazlası Daha az

Synthesis and characterization of ozonated oil nanoemulsions

Tığlı-Aydın, Rahime Seda | Kazancı, Füsun

Article | 2018 | JAOCS, Journal of the American Oil Chemists' Society95 ( 11 ) , pp.1385 - 1398

In recent years, the use of ozonated oil (ozone enriched oil form) is being increasingly preferred for biomedical applications because of its antibacterial activity. Among most important reasons of this choice is the high molecular affinity of the ozone molecule and intracellular effects of the products of ozone and the unsaturated fatty-acid chemical reactions in cellular signaling systems. The aim of the present study was to synthesize and optimize the ozonated oil nanoemulsion system that would be transferred into the living systems easily, suggesting a promising carrier system for various biomedical applications. By varying form . . .ulation parameters (surfactant-to-oil ratio, surfactant concentration, mixing rate, and surfactant type), nanoemulsions were investigated in terms of mean particle diameters, distributions, and stabilities. Nanoemulsions with high stability and small droplet diameters (212.7 nm) could be produced under optimized conditions with Tween 40 as the surfactant at a 750 rpm mixing rate using the emulsion inversion point (EIP) low-energy method. Spherical and uniformly distributed nanoemulsions were observed by SEM, which also supports mean particle diameter measurements. Fourier-transform infrared spectroscopy (FTIR) and 13C NMR (nuclear magnetic resonance) studies indicated an ozonide structure within the nanoemulsion system, which remained even after 30 days of storage. The antibacterial activity of ozonated oil emulsions against Staphylococcus aureus and Escherichia coli suggests promising applications in the biomedical field. © 2018 AOC Daha fazlası Daha az

Impacts of hybrid synapses on the noise-delayed decay in scale-free neural networks

Yılmaz, Ergin

Article | 2014 | Chaos, Solitons and Fractals66 , pp.1 - 8

We study the phenomenon of noise-delayed decay in a scale-free neural network consisting of excitable FitzHugh-Nagumo neurons. In contrast to earlier works, where only electrical synapses are considered among neurons, we primarily examine the effects of hybrid synapses on the noise-delayed decay in this study. We show that the electrical synaptic coupling is more impressive than the chemical coupling in determining the appearance time of the first-spike and more efficient on the mitigation of the delay time in the detection of a suprathreshold input signal. We obtain that hybrid networks including inhibitory chemical synapses have h . . .igher signal detection capabilities than those of including excitatory ones. We also find that average degree exhibits two different effects, which are strengthening and weakening the noise-delayed decay effect depending on the noise intensity. © 2014 Elsevier Ltd. All rights reserved Daha fazlası Daha az

Biodegradable poly(ε-caprolactone)-based graft copolymers via poly(linoleic acid): In vitro enzymatic evaluation

Allı, Sema | Tığlı-Aydın, Rahime Seda | Allı, Abdülkadir | Hazer, Baki

Article | 2015 | JAOCS, Journal of the American Oil Chemists' Society92 ( 3 ) , pp.449 - 458

Well-defined graft copolymers based on poly(?-caprolactone) (PCL) via poly(linoleic acid) (PLina), are derived from soybean oil. Poly(linoleic acid)-g-poly(?-caprolactone) (PLina-g-PCL) and poly(linoleic acid)-g-poly(styrene)-g-poly(?-caprolactone) (PLina-g-PSt-g-PCL) were synthesized by ring-opening polymerization of ?-caprolactone initiated by PLina and one-pot synthesis of graft copolymers, and by ring-opening polymerization and free radical polymerization by using PLina, respectively. PLina-g-PCL, PLina-g-PSt-g-PCL3, and PLina-g-PSt-g-PCL4 copolymers containing 96.97, 75.04 and 80.34 mol% CL, respectively, have been investigated . . . regarding their enzymatic degradation properties in the presence of Pseudomonas lipase. In terms of weight loss, after 1 month, 51.5% of PLina-g-PCL, 18.8% of PLina-g-PSt-g-PCL3, and 38.4% of PLina-g-PSt-g-PCL4 were degraded, leaving remaining copolymers with molecular weights of 16,140, 83,220 and 70,600 Da, respectively. Introducing the PLina unit into the copolymers greatly decreased the degradation rate. The molar ratio of [CL]/[Lina] dramatically decreased, from 21.3 to 8.4, after 30 days of incubation. Moreover, reduced PCL content in PLina-g-PSt-g-PCL copolymers decreased the degradation rate, probably due to the PSt enrichment within the structure, which blocks lipase contact with PCL units. Thus, copolymerization of PCL with PLina and PSt units leads to a controllable degradation profile, which encourages the use of these polymers as promising biomaterials for tissue engineering applications. © AOCS 2015 Daha fazlası Daha az

Effects of astrocyte on weak signal detection performance of Hodgkin–Huxley neuron

Erkan, Yasemin | Saraç, Zehra | Yılmaz, Ergin

Article | 2019 | Nonlinear Dynamics95 ( 4 ) , pp.3411 - 3421

By virtue of recent developments in brain measurement technology, it is now recognized that information processing in brain includes not only neurons but also astrocytes. For this reason, to illustrate the effects of astrocyte on information processing in neuronal systems, we research the weak signal detection performance of the Hodgkin–Huxley neuron under the effect of astrocyte. It is found that the weak signal detection performance of the neuron exhibits the stochastic resonance phenomenon depending on noise intensity, where the presence of astrocyte with an optimal coupling strength significantly increases the detection performa . . .nce of the neuron when compared the one without astrocyte. The obtained results also reveal that there is an optimal weak signal frequency ensuring the best detection performance. Besides, we show that the colored noise exhibits a better performance than white Gaussian noise on improving the weak signal detection capacity of the neuron; moreover, the weak signal detection performance of the neuron demonstrates a resonance-like dependence on the correlation time of the noise. Finally, we investigate the effects of calcium channel noise. Although the calcium channel noise generally reduces the weak signal detection performance of the neuron, the optimal coupling strength warranting the best detection performance critically depends on its intensity. © 2019, Springer Nature B.V Daha fazlası Daha az

Poly(Pyrrole-co-pyrrole-2-carboxylic acid)/pyruvate oxidase based biosensor for phosphate: Determination of the potential, and application in streams

Korkut, Şeyda | Göl, Saliha | Kılıç, Muhammet Samet

Article | 2019 | Electroanalysis , pp.3411 - 3421

A biosensor based on conductive poly(pyrrole-co-pyrrole-2-carboxylic acid) [Poly(Py-co-PyCOOH)] copolymer film coated gold electrode was developed for the quantitative phosphate determination. Enzyme pyruvate oxidase was immobilized chemically via the functional carboxylated groups of the copolymer. The potential to be applied which is deficiency of phosphate biosensor studies for precise phosphate detection was clarified by using differential pulse voltammetry technique. Performance of the sensing ability of the biosensor was improved by optimizing cofactor/cosubstrate concentrations, polymeric film density and pH. The biosensor sh . . .owed a linearity up to phosphate concentration of 5 mM, operational stability with a relative standard deviation (RSD) of 0.07 % (n=7) and accuracy of 101 % at -0.15 V (vs. Ag/AgCl). Detection limit (LOD) and sensitivity were calculated to be 13.3 µM and 5.4 µA mM-1 cm-2, respectively by preserving 50 % of its initial response at the end of 30 days. It's performance was tested to determine phosphate concentrations in two streams of Zonguldak City in Turkey. Accuracy of phosphate measurement in stream water was found to be 91 %. © 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinhei Daha fazlası Daha az

Effects of electromagnetic induction on vibrational resonance in single neurons and neuronal networks

Baysal, Veli | Yılmaz, Ergin

Article | 2020 | Physica A: Statistical Mechanics and its Applications537 , pp.3411 - 3421

In this paper, Vibrational Resonance (VR), in which the response of some dynamical systems to a weak, low frequency signal can be enhanced by the optimal amplitude of high frequency signal, is investigated under the effects of electromagnetic induction in both single neurons and small-world networks. We find that the occurrence of VR in single neurons requires less energy in the presence of electromagnetic induction, although the resonant peak of the response reduces. Besides, VR can be obtained in small-world networks both with and without electromagnetic induction. In small-world neuronal networks, the highest resonance peak of VR . . . enhances with an increase in the probability of adding link in case of without electromagnetic induction. On the other hand, with the increasing of the probability of adding link, VR disappears in the presence of relatively strong electromagnetic induction, while it enhances in the presence of relatively weak electromagnetic induction. © 2019 Elsevier B.V Daha fazlası Daha az

A theoretical description of inverse stochastic resonance in nature

Torres, Joaquín J. | Uzuntarla, Muhammet | Marro J.

Article | 2020 | Communications in Nonlinear Science and Numerical Simulation80 , pp.3411 - 3421

The inverse stochastic resonance (ISR) phenomenon consists of an unexpected depression in the response of a system under external noise, e.g., as observed in the mean firing rate in some pacemaker neurons subject to moderate values of noise. A possible cause for such unexpected reaction is the occurrence of a bistable regime controlling these neurons dynamics. We here explore theoretically the emergence of ISR in a general bistable model system, and thus determine the specific conditions the potential function driving the dynamics must accomplish. We conclude that such an intriguing, and apparently widely observed, phenomenon ensues . . . in the case of an asymmetric potential function when the high activity minimum state of the system is metastable having a larger basin of attraction than the low activity state which is the global minimum of the system. We then discuss on the relevance of such a picture to understand the ISR features and to predict its appearance in nature. In addition, we report on existence of another intriguing, non-standard stochastic resonance in our model even in the absence of any weak signal input. Depending on the shape of the potential function, this new phenomenon shows up together with ISR precisely within the theoretical framework we present in this paper. © 2019 Elsevier B.V Daha fazlası Daha az

Inverse stochastic resonance in networks of spiking neurons

Uzuntarla, Muhammet | Barreto, Ernest | Torres, Joaquin J.

Article | 2017 | PLoS Computational Biology13 ( 7 ) , pp.3411 - 3421

Inverse Stochastic Resonance (ISR) is a phenomenon in which the average spiking rate of a neuron exhibits a minimum with respect to noise. ISR has been studied in individual neurons, but here, we investigate ISR in scale-free networks, where the average spiking rate is calculated over the neuronal population. We use Hodgkin-Huxley model neurons with channel noise (i.e., stochastic gating variable dynamics), and the network connectivity is implemented via electrical or chemical connections (i.e., gap junctions or excitatory/inhibitory synapses). We find that the emergence of ISR depends on the interplay between each neuron’s intrinsi . . .c dynamical structure, channel noise, and network inputs, where the latter in turn depend on network structure parameters. We observe that with weak gap junction or excitatory synaptic coupling, network heterogeneity and sparseness tend to favor the emergence of ISR. With inhibitory coupling, ISR is quite robust. We also identify dynamical mechanisms that underlie various features of this ISR behavior. Our results suggest possible ways of experimentally observing ISR in actual neuronal systems. © 2017 Uzuntarla et al Daha fazlası Daha az

Soybean oil based polylactic acid membranes: Synthesis and degradation characteristics

Aydın Tığlı, R. Seda | Akyol, Elvan | Hazer, Baki

Article | 2018 | Journal of Polymers and the Environment26 ( 3 ) , pp.1262 - 1271

Controlling the degradation parameters is one of the main challenges of preparing appropriate biomaterials for biomedical applications. In this study, the effect of soybean oil inclusion on hydrolytic degradation of polylactic acid (PLA) was investigated both in vitro and in vivo. PLA/oil membranes were prepared by using polymeric soybean oil (PSO), epoxidized soybean oil and soybean oil (SOYA) with their varied concentrations. Degradation of membranes was performed in vitro for 8 weeks period and in vivo for 4 weeks period. Weight loss, changes in molecular weight, thermal properties and morphological changes were studied during de . . .gradation. SOYA blended PLA membranes show the lowest degradation rates by bulk degradation after 4 weeks in vitro, followed by surface erosion for the first week. Approximately twofold high percentage weight losses of all membranes were obtained after 4 weeks of degradation in vivo in comparison with in vitro data. The significant weight loss, molecular weight loss and thermal property change for PSO blended membranes were determined during in vivo degradation which highlights the increase of degradation rate by bulk degradation. Drastic morphological changes were observed on surface of degraded membranes in vivo with large pores, cracks, fissures and large cavities. © 2017, Springer Science+Business Media New York Daha fazlası Daha az

Inverse stochastic resonance induced by synaptic background activity with unreliable synapses

Uzuntarla, Muhammet

Article | 2013 | Physics Letters, Section A: General, Atomic and Solid State Physics377 ( 38 ) , pp.2585 - 2589

Inverse stochastic resonance (ISR) is a recently pronounced phenomenon that is the minimum occurrence in mean firing rate of a rhythmically firing neuron as noise level varies. Here, by using a realistic modeling approach for the noise, we investigate the ISR with concrete biophysical mechanisms. It is shown that mean firing rate of a single neuron subjected to synaptic bombardment exhibits a minimum as the spike transmission probability varies. We also demonstrate that the occurrence of ISR strongly depends on the synaptic input regime, where it is most prominent in the balanced state of excitatory and inhibitory inputs. © 2013 Els . . .evier B.V Daha fazlası Daha az

6698 sayılı Kişisel Verilerin Korunması Kanunu kapsamında yükümlülüklerimiz ve çerez politikamız hakkında bilgi sahibi olmak için alttaki bağlantıyı kullanabilirsiniz.

creativecommons
Bu site altında yer alan tüm kaynaklar Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.
Platforms