Filtreler
Filtreler
Bulunan: 4 Adet 0.001 sn
Koleksiyon [16]
Tam Metin [2]
Yayın Türü [2]
Yazar [11]
Yayın Yılı [3]
Konu Başlıkları [18]
Yayıncı [1]
Yayın Dili [1]
Dergi Adı [4]
High fluorescence emission silver nano particles coated with poly (styrene-g-soybean oil) graft copolymers: Antibacterial activity and polymerization kinetics

Hazer, Baki | Kalaycı, Özlem A.

Article | 2017 | Materials Science and Engineering C74 , pp.259 - 269

Autoxidation of poly unsaturated fatty acids makes negative effect on foods. In this work, this negative effect was turned to a great advantage using autoxidized soybean oil as a macroperoxide nanocomposite initiator containing silver nano particles in free radical polymerization of vinyl monomers. The synthesis of soybean oil macro peroxide was carried out by exposing soybean oil to air oxygen with the presence of silver nanoparticles (Ag NPs) at room temperature. Autoxidized soybean oil macroperoxide containing silver nanoparticles (Agsbox) successfully initiated the free radical polymerization of styrene in order to obtain Polyst . . .yrene (PS)-g-soybean oil graft copolymer containing Ag NPs. Both autoxidized soybean oil and PS-g-sbox with Ag NPs showed a surface plasmon resonance and high fluorescence emission. Overall rate constant (K) of styrene polymerization initiated by autoxidized soybean oil macroperoxide with Ag NPs was found to be K = 1.95.10- 4 Lmol- 1 s- 1 at 95 °C. Antibacterial efficiency was observed in the PS-g-soybean oil graft copolymer film samples containing Ag NPs. 1H NMR and GPC techniques were used for the structural analysis of the fractionated polymeric oils. © 2016 Elsevier B.V Daha fazlası Daha az

Optical characterization of CdS nanoparticles embedded into the comb-type amphiphilic graft copolymer

Kalaycı, Özlem A. | Duygulu, Özgür | Hazer, Baki

Article | 2013 | Journal of Nanoparticle Research15 ( 1 ) , pp.259 - 269

This study refers to the synthesis and characterization of a novel organic/inorganic hybrid nanocomposite material containing cadmium sulfide (CdS) nanoparticles. For this purpose, a series of polypropylene (PP)-g-polyethylene glycol (PEG), PP-g-PEG comb-type amphiphilic graft copolymers were synthesized. PEGs with Mn = 400, 2000, 3350, and 8000 Da were used and the graft copolymers obtained were coded as PPEG400, PPEG2000, PPEG3350, and PPEG8000. CdS nanoparticles were formed in tetrahydrofuran solution of PP-g-PEG amphiphilic comb-type copolymer by the reaction between aqueous solutions of Na2S and Cd(CH3COO)2 simultaneously. Mice . . .lle formation of PPEG2000 comb-type amphiphilic graft copolymer in both solvent/non-solvent (petroleum ether-THF) by transmission electron microscopy (TEM). The optical characteristics, size morphology, phase analysis, and dispersion of CdS nanoparticles embedded in PPEG400, PPEG2000, PPEG3350, and PPEG8000 comb-type amphiphilic graft copolymer micelles were determined by high resolution TEM (HRTEM), energy dispersive spectroscopy, UV-vis spectroscopy, and fluorescence emission spectroscopy techniques. The aggregate size of PPEG2000-CdS is between 10 and 50 nm; however, in the case of PPEG400-CdS, PPEG3350-CdS, and PPEG8000-CdS samples, it is up to approximately 100 nm. The size of CdS quantum dots in the aggregates for PPEG2000 and PPEG8000 samples was observed as 5 nm by HRTEM analysis, and this result was also supported by UV-vis absorbance spectra and fluorescence emission spectra. © 2012 Springer Science+Business Media Dordrecht Daha fazlası Daha az

Optical signal processing of interference fringes by Hartley transform method

Kaya, Hakan | Saraç, Zehra | Özer, Mahmut | Taşkın, Halit

Proceedings | 2010 | Proceedings of SPIE - The International Society for Optical Engineering7746 , pp.259 - 269

In this paper, the processing of interference fringes is achieved by Hartley transform method. The experimental and simulated interference fringe patterns are used for the signal analysis. Phase results are presented. These are compared with phase obtained by Fourier transform method. Disadvantages and advantages of Hartley transform method used for the evaluation of interference fringe patterns are given. © 2010 SPIE.

Synthesis, characterization, and antibacterial activity of metal nanoparticles embedded into amphiphilic comb-type graft copolymers

Kalaycı, Özlem A. | Cömert, Füsun B. | Hazer, Baki | Atalay, Turgay | Cavicchi, Kevin A. | Çakmak, Mükerrem

Article | 2010 | Polymer Bulletin65 ( 3 ) , pp.215 - 226

The synthesis, spectroscopic characterization, and antimicrobial efficiency of gold and silver nanoparticles embedded in novel amphiphilic comb-type graft copolymers having good film-forming properties have been described. Amphiphilic comb-type graft copolymers were synthesized by the reaction of chlorinated polypropylene (PP) (Mw = 140,000 Da) with polyethylene glycol (PEG) (Mn = 2,000 Da) at different molar ratios. Metal nanoparticles embedded graft copolymers were prepared by reducing solutions of the salts of silver or gold and the copolymer in tetrahydrofuran. The optical properties of the metal nanoparticle embedded copolymers . . . were determined by using UV-visible spectroscopy. Surface plasmon resonance (SPR) of the gold and silver nanoparticle embedded copolymers in toluene was observed at a maximum wavelength (?max) of 428 and 551 nm in the UV-VIS absorption spectra, respectively. The average particle diameters of the gold and silver nanoparticles were found to be 50 nm from the high resolution scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Amphiphilic polymer films containing silver and gold nanoparticles were found to be highly antimicrobial by virtue of their antiseptic properties to Escherichia coli and Staphylococcus aureus. © Springer-Verlag 2009 Daha fazlası Daha az

6698 sayılı Kişisel Verilerin Korunması Kanunu kapsamında yükümlülüklerimiz ve çerez politikamız hakkında bilgi sahibi olmak için alttaki bağlantıyı kullanabilirsiniz.

creativecommons
Bu site altında yer alan tüm kaynaklar Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.
Platforms