Filtreler
Ecofriendly autoxidation of castor oil/ricinoleic acid. Multifunctional macroperoxide initiators for multi block/graft copolymers

Hazer, Baki | Eren, Melike

Article | 2019 | JAOCS, Journal of the American Oil Chemists' Society96 ( 4 ) , pp.421 - 432

Ecofriendly autoxidation is a reaction of air oxygen with unsaturated organic molecules at room temperature. Castor oil and ricinoleic acid were ecofriendly autoxidized for 5 months to obtain castor oil macroperoxide with a Mn of 1935 g mol -1 (Pcast5m) and the ricinoleic acid macroperoxide initiator (Prici5m) with a Mn of 1169 g mol -1 . Peroxide groups thermally initiated the free radical polymerization of methyl methacrylate (MMA), n-butyl methacrylate (nBMA), and styrene (S). Peroxide formation in the oxidized castor oil and ricinoleic acid was confirmed using iodometric analysis, elemental analysis, and differential scanning ca . . .lorimetry technique. Peroxide decomposition in both macroperoxide initiators was observed at 166 °C for Prici5m and 170 °C for Pcast5m. Hydroxyl groups of Pcast5m were reacted with methacryloyl chloride to obtain methacrylated castor oil macroperoxide (PcastMA). The polymerization rates of the obtained macroinitiators were compared. The polymerization rate order is Pcast5m > Prici5m > PcastMA. Polymerization of styrene by PcastMA resulted in an increase in molar masses and an increase in the polymerization time while those of the styrene polymerization by Pcast5m and Prici5m remained constant. Carboxylic acid groups were reacted with amine-terminated polyethylene glycol (PEG), polydimethyl siloxane (PDMS), and polytetrahydrofuran (PTHF) while the hydroxyl functionality initiated the ring-opening polymerization of ?-caprolactone (CL). Prici-PEG-PMMA, Prici-PS-PDMS, Prici-PS-PTHF, Pcast-PS-PCL, Pcast-PCL-PMMA, and Pcast-PS-PnBMA multiblock copolymers were prepared and characterized using spectrometric, thermal, and stress–strain measurement techniques. © 2019 AOC Daha fazlası Daha az

Synthesis of novel biodegradable elastomers based on poly[3-hydroxy butyrate] and poly[3-hydroxy octanoate] via transamidation reaction

Hazer, Baki | Akyol, Elvan | Şanal, Timur | Guillaume, Sophie | Çakmaklı, Birten | Steinbuchel, Alexander

Article | 2019 | Polymer Bulletin76 ( 2 ) , pp.919 - 932

Poly(3-hydroxyalkanoate)s (PHAs) are a class of polymers receiving attention because of their potential as renewable, biodegradable and high-technology properties. Unlike most short chain length (scl) PHAs such as poly(3-hydroxybutyrate) (PHB), medium chain length (mcl) PHAs such as poly(3-hydroxyoctanoate) (PHO) exhibit low crystallinity and are elastomeric in character. PHB-b–PEG-b–PHO block copolymers can combine both properties in block copolymer matrix. In this study, we report the synthesis of the block copolymers combining the PHB and PHO blocks. Transamidation reactions of PHB with polyethylene glycol with primary amine yiel . . .d equimolar amounts and PHB with amine ends. PHO reacts with the modified PHB containing the amine end to give PHB-b–PEG-b–PHO block copolymers. Structural analysis of the products was performed by using 1H–, 13C, heteronuclear single quantum coherence NMR techniques. Thermal and mechanical properties of the block polymers were also evaluated. © 2018, Springer-Verlag GmbH Germany, part of Springer Nature Daha fazlası Daha az

6698 sayılı Kişisel Verilerin Korunması Kanunu kapsamında yükümlülüklerimiz ve çerez politikamız hakkında bilgi sahibi olmak için alttaki bağlantıyı kullanabilirsiniz.

creativecommons
Bu site altında yer alan tüm kaynaklar Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.
Platforms