Tool forces and specific energy prediction models in the process of sandstones cutting by using conical picks

Wang X. | Wang Q.-F. | Su O.

Article | 2018 | Scientific Mining Journal57 ( 1 ) , pp.5 - 14

In this study, unrelieved rock cutting experiments were conducted at the linear rock cutting machine and the characteristics of tool forces were discussed. The correlations among tool forces, specific energy, cutting depth, and rock strength were analyzed using single factor regression analysis method. Based on multiple non-linear regression method, the models of tool forces and specific energy were developed considering the rock strength and cutting depth. The results indicate that models of tool forces have the superior performance. When the model of specific energy is analyzed using the compressive strength of the rock, it was se . . .en that the correlations are weak compared to the model related to tensile strength of rock. In conclusion, it is emphasized that the proposed models presented in this study are particularly recommended for performance prediction of soft and medium-hard strength sandstones in case conical picks are employed. © 2018 Union of Chambers of Engineers and Architects of Turkey. All Rights Reserved Daha fazlası Daha az

Effect of cutting depth and line spacing on the cuttability behavior of sandstones by conical picks

Wang X. | Su O. | Wang Q.-F. | Liang Y.-P.

Article | 2017 | Arabian Journal of Geosciences10 ( 23 ) , pp.5 - 14

Various types of conical picks in different shapes are produced and widely employed on mechanical excavators. Depending on the mechanical and abrasivity properties of rocks, appropriate shape of pick is selected. In order to obtain maximum efficiency from the pick during excavation, the interaction between the pick and rock and the cutting mechanism play very important role. In this context, linear cutting tests were conducted by using a conical pick at the cutting depths between 3 and 18 mm and also at the various line spacings on sandstones exhibiting different mechanical properties. The results indicated that cutting depth and li . . .ne spacing have significant influences on the tool forces acting on the pick, the ratio of normal to cutting force, and the specific energy. Accordingly, strong correlations and empirical models were developed. In conclusion, the empirical models proposed for estimating the forces and specific energy would be used for producing the conical bits and also designing the cutter heads of mechanical excavators on soft and medium-hard strength sandstones. © 2017, Saudi Society for Geosciences Daha fazlası Daha az

6698 sayılı Kişisel Verilerin Korunması Kanunu kapsamında yükümlülüklerimiz ve çerez politikamız hakkında bilgi sahibi olmak için alttaki bağlantıyı kullanabilirsiniz.

Bu site altında yer alan tüm kaynaklar Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.