Properties of concrete containing nonground ash and slag as fine aggregate

Yüksel, İsa | Genç, Ayten

Article | 2007 | ACI Materials Journal104 ( 4 ) , pp.397 - 403

The possibility of using granulated blast-furnace slag (GBFS), furnace bottom ash (FBA), and their combination as fine aggregates in concrete was studied by performing experiments. These materials were used without applying any preprocesses such as sieving and grinding. The compressive, flexural, and split tensile strengths of concretes with natural sand replaced with GBFS, FBA, and GBFS plus FBA at 10, 20, 30, 40, and 50% were examined at a fixed water-cement ratio (w/c). The percentages represent the replacement percentage of fine aggregate by GBFS, FBA, or their combination and were evaluated depending on weight basis. Also, micr . . .ostructure and water absorption capacity of concrete were researched. Test results showed that concrete strength decreases with increasing replacement ratio with respect to reference concrete. In addition, FBA decreases the strength of concrete more than GBFS. In particular, the strength of concrete was detrimentally affected when the replacement ratio was beyond 40%. The micro structure studies showed that different pore structures were formed in the concrete depending on the replacement material, that is, GBFS or FBA. It is concluded that the main reason for the strength reduction in new concrete is the formation of a porous concrete structure. Moreover, an increase trend in water absorption capacity was observed for both replacement materials. Copyright © 2007, American Concrete Institute. All rights reserved Daha fazlası Daha az

Improvement on SIFCON performance by fiber orientation and high-volume mineral admixtures

Yazici H. | Aydin S. | Yigiter H. | Yardimci M.Y. | Alptuna G.

Article | 2010 | Journal of Materials in Civil Engineering22 ( 11 ) , pp.1093 - 1101

The effects of steel fiber alignment and high-volume mineral admixture replacement [Class C fly ash (FA) and ground granulated blast furnace slag (GGBS)] on the mechanical properties of SIFCON (Slurry Infiltrated Fiber Concrete) have been investigated. Ordinary portland cement was replaced with 50% (by weight) FA or GGBS in SIFCON slurriestwo different steel fiber alignments (random and oriented in one direction) were used. Test results showed that FA and GGBS replacement positively affected mechanical properties (compressive and flexural strength and fracture energy) and fiber alignment is an important factor for superior performan . . .ce. Binary combination of improved matrices (low water/binder ratio and mineral admixture replacement) and proper fiber orientation enhances mechanical performance, particularly flexural properties of SIFCON. Flexural strength and fracture energy of this composite are 138 MPa and 195,815 N/m, respectively. Scanning electron microscope investigations revealed tobermorite-like structures having different morphology such as foiled, fibroushoneycomb with low Ca/Si ratio after autoclaving. Mercury porosimeter tests showed the decreasing of total porosity and pore refinement with FA or GGBS. © 2010 ASCE Daha fazlası Daha az

6698 sayılı Kişisel Verilerin Korunması Kanunu kapsamında yükümlülüklerimiz ve çerez politikamız hakkında bilgi sahibi olmak için alttaki bağlantıyı kullanabilirsiniz.

Bu site altında yer alan tüm kaynaklar Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.