Filtreler
Preventive role of Pycnogenol ® against the hyperglycemia-induced oxidative stress and DNA damage in diabetic rats

Aydın S. | Bacanlı M. | Anlar H.G. | Çal T. | Arı N. | Ündeğer Bucurgat Ü. | Başaran A.A.

Article | 2019 | Food and Chemical Toxicology124 , pp.54 - 63

Diabetes mellitus, a complex progressive metabolic disorder, leads to some oxidative stress related complications. Pycnogenol ® (PYC), a plant extract obtained from Pinus pinaster, has been suggested to be effective in many diseases including diabetes, cancer, inflammatory and immune system disorders. The mechanisms underlying the effects of PYC in diabetes need to be elucidated. The aim of this study was to determine the effects of PYC treatment (50 mg/kg/day, orally, for 28 days) on the DNA damage and biochemical changes in the blood, liver, and kidney tissues of experimental diabetic rats. Changes in the activities of catalase, s . . .uperoxide dismutase, glutathione peroxidase, glutathione reductase, and glutathione-S-transferase enzymes, and the levels of 8-hydroxy-2'-deoxyguanosine, total glutathione, malondialdehyde, insulin, total bilirubin, alanine aminotransferase, aspartate aminotransferase, gamma-glutamyl transferase, high density lipoprotein, low density lipoprotein, total cholesterol, and triglyceride were evaluated. DNA damage was also determined in the whole blood cells and the liver and renal tissue cells using the alkaline comet assay. PYC treatment significantly ameliorated the oxidative stress, lipid profile, and liver function parameters as well as DNA damage in the hyperglycemic rats. The results show that PYC treatment might improve the hyperglycemia-induced biochemical and physiological changes in diabetes. © 201 Daha fazlası Daha az

Preventive role of Pycnogenol (R) against the hyperglycemia-induced oxidative stress and DNA damage in diabetic rats

Aydin, Sevtap | Bacanli, Merve | Anlar, Hatice Gul | Cal, Tugbagul | Ari, Nuray | Bucurgat, Ulku Undeger | Basaran, Arif Ahmet

Article | 2019 | FOOD AND CHEMICAL TOXICOLOGY124 , pp.54 - 63

Diabetes mellitus, a complex progressive metabolic disorder, leads to some oxidative stress related complications. Pycnogenol (R) (PYC), a plant extract obtained from Pinus pinaster, has been suggested to be effective in many diseases including diabetes, cancer, inflammatory and immune system disorders. The mechanisms underlying the effects of PYC in diabetes need to be elucidated. The aim of this study was to determine the effects of PYC treatment (50 mg/kg/day, orally, for 28 days) on the DNA damage and biochemical changes in the blood, liver, and kidney tissues of experimental diabetic rats. Changes in the activities of catalase, . . . superoxide dismutase, glutathione peroxidase, glutathione reductase, and glutathione-S-transferase enzymes, and the levels of 8-hydroxy-2'-deoxyguanosine, total glutathione, malondialdehyde, insulin, total bilirubin, alanine aminotransferase, aspartate aminotransferase, gamma-glutamyl transferase, high density lipoprotein, low density lipoprotein, total cholesterol, and triglyceride were evaluated. DNA damage was also determined in the whole blood cells and the liver and renal tissue cells using the alkaline comet assay. PYC treatment significantly ameliorated the oxidative stress, lipid profile, and liver function parameters as well as DNA damage in the hyperglycemic rats. The results show that PYC treatment might improve the hyperglycemia-induced biochemical and physiological changes in diabetes Daha fazlası Daha az

Pycnogenol prevents peritoneal adhesions

Sahbaz A. | Aynioglu O. | Isik H. | Gun B.D. | Cengil O. | Erol O.

Article | 2015 | Archives of Gynecology and Obstetrics292 ( 6 ) , pp.1279 - 1284

Purpose: This study tested the ability of pycnogenol, an extract from the bark of the French maritime pine (Pinus pinaster), to prevent intra-abdominal adhesions. Methods: Thirty female Wistar albino rats were separated randomly into three equal groups: Group (1) the control group, which underwent surgery, but was given no drug; Group (2) given 10 mg/kg of pycnogenol dissolved in normal saline intraperitoneally for 10 days after surgery; and Group (3) given 0.1 mL of normal saline for 10 days intraperitoneally after surgery. On post-operative day 10, all of the animals were killed and any adhesions were evaluated macroscopically and . . . histopathologically. Results: The macroscopic adhesion scores (mean ± SD) for Groups 1, 2, and 3 were 2.5 ± 0.53, 0.60 ± 0.70, and 2.0 ± 0.82, respectively. The macroscopic adhesion score was significantly lower in Group 2 than in Groups 1 and 3 (p Daha fazlası Daha az

6698 sayılı Kişisel Verilerin Korunması Kanunu kapsamında yükümlülüklerimiz ve çerez politikamız hakkında bilgi sahibi olmak için alttaki bağlantıyı kullanabilirsiniz.

creativecommons
Bu site altında yer alan tüm kaynaklar Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.
Platforms