Filtreler
Pectoral muscular twitching: a rare manifestation of spontaneous twiddler syndrome

Bozyel, Serdar | Aksu, Tolga | Guler, Tumer Erdem | Ozcan, Kazim Serhan | Aktas, Mujdat

Letter | 2017 | JOURNAL OF GERIATRIC CARDIOLOGY14 ( 8 ) , pp.532 - 533

WOS: 000413842500007 PubMed: 29089970

Stochastic resonance on Newman-Watts networks of Hodgkin-Huxley neurons with local periodic driving

Özer, Mahmut | Perc, Matjaž | Uzuntarla, Muhammet

Article | 2009 | Physics Letters, Section A: General, Atomic and Solid State Physics373 ( 10 ) , pp.964 - 968

We study the phenomenon of stochastic resonance on Newman-Watts small-world networks consisting of biophysically realistic Hodgkin-Huxley neurons with a tunable intensity of intrinsic noise via voltage-gated ion channels embedded in neuronal membranes. Importantly thereby, the subthreshold periodic driving is introduced to a single neuron of the network, thus acting as a pacemaker trying to impose its rhythm on the whole ensemble. We show that there exists an optimal intensity of intrinsic ion channel noise by which the outreach of the pacemaker extends optimally across the whole network. This stochastic resonance phenomenon can be . . .further amplified via fine-tuning of the small-world network structure, and depends significantly also on the coupling strength among neurons and the driving frequency of the pacemaker. In particular, we demonstrate that the noise-induced transmission of weak localized rhythmic activity peaks when the pacemaker frequency matches the intrinsic frequency of subthreshold oscillations. The implications of our findings for weak signal detection and information propagation across neural networks are discussed. © 2009 Elsevier B.V. All rights reserved Daha fazlası Daha az

Autaptic pacemaker mediated propagation of weak rhythmic activity across small-world neuronal networks

Yılmaz, Ergin | Baysal, Veli | Özer, Mahmut | Perc, Matjaž

Article | 2016 | Physica A: Statistical Mechanics and its Applications444 , pp.538 - 546

We study the effects of an autapse, which is mathematically described as a self-feedback loop, on the propagation of weak, localized pacemaker activity across a Newman-Watts small-world network consisting of stochastic Hodgkin-Huxley neurons. We consider that only the pacemaker neuron, which is stimulated by a subthreshold periodic signal, has an electrical autapse that is characterized by a coupling strength and a delay time. We focus on the impact of the coupling strength, the network structure, the properties of the weak periodic stimulus, and the properties of the autapse on the transmission of localized pacemaker activity. Obta . . .ined results indicate the existence of optimal channel noise intensity for the propagation of the localized rhythm. Under optimal conditions, the autapse can significantly improve the propagation of pacemaker activity, but only for a specific range of the autaptic coupling strength. Moreover, the autaptic delay time has to be equal to the intrinsic oscillation period of the Hodgkin-Huxley neuron or its integer multiples. We analyze the inter-spike interval histogram and show that the autapse enhances or suppresses the propagation of the localized rhythm by increasing or decreasing the phase locking between the spiking of the pacemaker neuron and the weak periodic signal. In particular, when the autaptic delay time is equal to the intrinsic period of oscillations an optimal phase locking takes place, resulting in a dominant time scale of the spiking activity. We also investigate the effects of the network structure and the coupling strength on the propagation of pacemaker activity. We find that there exist an optimal coupling strength and an optimal network structure that together warrant an optimal propagation of the localized rhythm. © 2015 Elsevier B.V. All rights reserved Daha fazlası Daha az

6698 sayılı Kişisel Verilerin Korunması Kanunu kapsamında yükümlülüklerimiz ve çerez politikamız hakkında bilgi sahibi olmak için alttaki bağlantıyı kullanabilirsiniz.

creativecommons
Bu site altında yer alan tüm kaynaklar Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.
Platforms