Bulunan: 4 Adet 0.002 sn
Solution electrospinning of polypropylene-based fibers and their application in catalysis

Berber, Emine | Horzum, Nesrin | Hazer, Baki | Demir, Mustafa M.

Article | 2016 | Fibers and Polymers17 ( 5 ) , pp.760 - 768

Since the dissolution of polyolefins is a chronic problem, melt processing has been tacitly accepted as an obligation. In this work, polypropylene (PP) was modified on molecular level incorporating poly(ethylene glycol) (PEG) as graft segment (PP-g-PEG) in a range of 6 to 9 mol%. Gold nanoparticles were nucleated in the presence of the copolymer chains via redox reaction. The dissolution of the amphiphilic comb-type graft copolymers containing gold nanoparticles (80 nm in diameter) was achieved in toluene and successfully electrospun from its solution. The diameter of composite fibers was in the range from 0.3 to 2.5 µm. The design . . .of the structurally organized copolymer fiber mats provided a support medium for the nanoparticles enhancing the active surface area for the catalytic applications. The resulting composite fibers exhibited rapid catalytic reduction of methylene blue (MB) dye in the presence of sodium borohydride (NaBH4) compared to corresponding composite cast film. © 2016, The Korean Fiber Society and Springer Science+Business Media Dordrecht Daha fazlası Daha az

Synthesis, characterization, and antibacterial activity of metal nanoparticles embedded into amphiphilic comb-type graft copolymers

Kalaycı, Özlem A. | Cömert, Füsun B. | Hazer, Baki | Atalay, Turgay | Cavicchi, Kevin A. | Çakmak, Mükerrem

Article | 2010 | Polymer Bulletin65 ( 3 ) , pp.215 - 226

The synthesis, spectroscopic characterization, and antimicrobial efficiency of gold and silver nanoparticles embedded in novel amphiphilic comb-type graft copolymers having good film-forming properties have been described. Amphiphilic comb-type graft copolymers were synthesized by the reaction of chlorinated polypropylene (PP) (Mw = 140,000 Da) with polyethylene glycol (PEG) (Mn = 2,000 Da) at different molar ratios. Metal nanoparticles embedded graft copolymers were prepared by reducing solutions of the salts of silver or gold and the copolymer in tetrahydrofuran. The optical properties of the metal nanoparticle embedded copolymers . . . were determined by using UV-visible spectroscopy. Surface plasmon resonance (SPR) of the gold and silver nanoparticle embedded copolymers in toluene was observed at a maximum wavelength (?max) of 428 and 551 nm in the UV-VIS absorption spectra, respectively. The average particle diameters of the gold and silver nanoparticles were found to be 50 nm from the high resolution scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Amphiphilic polymer films containing silver and gold nanoparticles were found to be highly antimicrobial by virtue of their antiseptic properties to Escherichia coli and Staphylococcus aureus. © Springer-Verlag 2009 Daha fazlası Daha az

An electrochemical biosensor for direct detection of DNA using polystyrene-g-soya oil-g-imidazole graft copolymer

Koçak, İzzet | Şanal, Timur | Hazer, Baki

Article | 2017 | Journal of Solid State Electrochemistry21 ( 5 ) , pp.1397 - 1405

A label-free electrochemical DNA biosensor was developed through the attachment of polystyrene-g-soya oil-g-imidazole graft copolymer (PS-PSyIm) onto modified graphene oxide (GO) electrodeposited on glassy carbon electrode (GC). GC/GO electrode was initially functionalised via electrochemical reduction of 4-nitrobenzene diazonium salt, followed by the electrochemical reduction of NO2 to NH2. Subsequent to the electrochemical deposition of gold nanoparticles on modified surface, the attachment of the PS-PSyIm graft copolymer on the resulting electrode was achieved. The interaction of PS-PSyIm with DNA at the bare glassy carbon electr . . .ode was studied by cyclic voltammetry technique, and it was found that interaction predominantly takes place through intercalation mode. The selectivity of developed DNA biosensor was also explored by DPV on the basis of considering hybridisation event with non-complementary, one-base mismatched DNA and complementary target DNA sequence. Large decrease in the peak current was found upon the addition of complementary target DNA. The sensitivity of the developed DNA biosensor was also investigated, and detection limit was found to be 1.20 nmol L-1. © 2017, Springer-Verlag Berlin Heidelberg Daha fazlası Daha az

A novel poly(propylene-co-imidazole) based biofuel cell: System optimization and operation for energy generation

Kılıç, Muhammet Samet | Korkut, Şeyda | Hazer, Baki

Article | 2015 | Materials Science and Engineering C47 , pp.165 - 171

This study describes the construction of an enzymatic fuel cell comprised of novel gold nanoparticles embedded poly(propylene-co-imidazole) coated anode and cathode. Working electrode fabrication steps and operational conditions for the fuel cell have been optimized to get enhanced power output. Electrical generation capacity of the optimized cell was tested by using the municipal wastewater sample. The enzymatic fuel cell system reached to maximum power density with 1 µg and 8 µg of polymer quantity and bilirubin oxidase on electrode surface, respectively. The maximum power output was calculated to be 5 µW cm- 2 at + 0.56 V (vs. Ag . . ./AgCl) in phosphate buffer (pH 7.4, 100 mM, 20 °C) by the addition of 15 mM of glucose as a fuel source. The optimized enzymatic fuel cell generated a power density of 0.46 µW cm- 2 for the municipal wastewater sample. Poly(propylene-co-imidazole) was easily used for a fuel cell system owing to its metallic nanoparticle content. The developed fuel cell will play a significant role for energy conversion by using glucose readily found in wastewater and in vivo mediums. © 2014 Elsevier B.V. All rights reserved Daha fazlası Daha az

6698 sayılı Kişisel Verilerin Korunması Kanunu kapsamında yükümlülüklerimiz ve çerez politikamız hakkında bilgi sahibi olmak için alttaki bağlantıyı kullanabilirsiniz.

Bu site altında yer alan tüm kaynaklar Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.