Filtreler
3D Nonlinear Analysis of Ataturk Clay Core Rockfill Dam Considering Settlement Monitoring

Kartal, Murat Emre | Cavusli, Murat | Genis, Melih

Article | 2019 | INTERNATIONAL JOURNAL OF GEOMECHANICS19 ( 5 )

One of the most important causes of damages in clay core rockfill (CCR) dams is the deterioration of the rockfill material over time and big settlements in the dam body. Therefore, the forecast of the settlements and principal stresses in a CCR dam is extremely important for the safety and future of these important water structures. In this study, changes in the nonlinear behavior of a CCR dam were examined by effects of the various reservoir water heights. Moreover, the geodetic measurements were confirmed with the nonlinear analysis results. Ataturk Dam, which is the largest CCR dam in Turkey, was selected for three-dimensional (3 . . .D) nonlinear analyses. First, a 3D finitedifference model of Ataturk Dam was created using the FLAC3D software, which is based on the finite-difference method. A Mohr-Coulomb material model was used for the dam body materials (e.g., clay core, filters, alluvium, rockfill) and foundation for the 3D numerical analyses. Numerical analyses were carried out for five various reservoir water heights: empty reservoir, 50, 100, 153, and 170 m (full reservoir). According to the finite-difference analyses, the effect of various reservoir water heights on the nonlinear behavior of the Ataturk dam was assessed in detail, and how much maximum vertical settlement will occur in the Ataturk Dam body in the future was determined. In addition, principal stresses and horizontal displacements were evaluated for each reservoir condition, and these results were compared with each other. This study demonstrated that as the reservoir water height increased at the upstream side of the dam, the principal stresses and verticalhorizontal deformations occurring in the dam body obviously changed and increased. In the second part of this study, the geodetic vertical settlement results observed by the General Directorate of State Hydraulic Works (DSI) between 1992 and 2013 were presented graphically. These geodetic observation results and numerical analyses were compared in detail, and the geodetic measurement results were confirmed by numerical analysis results. (c) 2019 American Society of Civil Engineers Daha fazlası Daha az

3D Nonlinear Analysis of Atatürk Clay Core Rockfill Dam Considering Settlement Monitoring

Kartal M.E. | Çavusli M. | Genis M.

Article | 2019 | International Journal of Geomechanics19 ( 5 )

One of the most important causes of damages in clay core rockfill (CCR) dams is the deterioration of the rockfill material over time and big settlements in the dam body. Therefore, the forecast of the settlements and principal stresses in a CCR dam is extremely important for the safety and future of these important water structures. In this study, changes in the nonlinear behavior of a CCR dam were examined by effects of the various reservoir water heights. Moreover, the geodetic measurements were confirmed with the nonlinear analysis results. Atatürk Dam, which is the largest CCR dam in Turkey, was selected for three-dimensional (3 . . .D) nonlinear analyses. First, a 3D finite-difference model of Atatürk Dam was created using the FLAC3D software, which is based on the finite-difference method. A Mohr-Coulomb material model was used for the dam body materials (e.g., clay core, filters, alluvium, rockfill) and foundation for the 3D numerical analyses. Numerical analyses were carried out for five various reservoir water heights: empty reservoir, 50, 100, 153, and 170 m (full reservoir). According to the finite-difference analyses, the effect of various reservoir water heights on the nonlinear behavior of the Atatürk dam was assessed in detail, and how much maximum vertical settlement will occur in the Atatürk Dam body in the future was determined. In addition, principal stresses and horizontal displacements were evaluated for each reservoir condition, and these results were compared with each other. This study demonstrated that as the reservoir water height increased at the upstream side of the dam, the principal stresses and vertical-horizontal deformations occurring in the dam body obviously changed and increased. In the second part of this study, the geodetic vertical settlement results observed by the General Directorate of State Hydraulic Works (DSI) between 1992 and 2013 were presented graphically. These geodetic observation results and numerical analyses were compared in detail, and the geodetic measurement results were confirmed by numerical analysis results. © 2019 American Society of Civil Engineers Daha fazlası Daha az

Near-fault ground motion effects on the nonlinear response of dam-reservoir-foundation systems

Bayraktar A. | Altunişik A.C. | Sevim B. | Kartal M.E. | Türker T.

Article | 2008 | Structural Engineering and Mechanics28 ( 4 ) , pp.411 - 442

Ground motions in near source region of large crustal earthquakes are significantly affected by rupture directivity and tectonic fling. These effects are the strongest at longer periods and they can have a significant impact on Engineering Structures. In this paper, it is aimed to determine near-fault ground motion effects on the nonlinear response of dams including dam-reservoir-foundation interaction. Four different types of dam, which are gravity, arch, concrete faced rockfill and clay core rockfill dams, are selected to investigate the near-fault ground motion effects on dam responses. The behavior of reservoir is taken into acc . . .ount by using Lagrangian approach. Strong ground motion records of Duzce (1999), Northridge (1994) and Erzincan (1992) earthquakes are selected for the analyses. Displacements, maximum and minimum principal stresses are determined by using the finite element method. The displacements and principal stresses obtained from the four different dam types subjected to these near-fault strong-ground motions are compared with each other. It is seen from the results that near-fault ground motions have different impacts on the dam types Daha fazlası Daha az

6698 sayılı Kişisel Verilerin Korunması Kanunu kapsamında yükümlülüklerimiz ve çerez politikamız hakkında bilgi sahibi olmak için alttaki bağlantıyı kullanabilirsiniz.

creativecommons
Bu site altında yer alan tüm kaynaklar Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.
Platforms