PMMA-multigraft copolymers derived from linseed oil, soybean oil, and linoleic acid: Protein adsorption and bacterial adherence

Çakmaklı, Birten | Hazer, Baki | Açıkgöz, Şerefden | Can, Murat | Cömert, Füsun B.

Article | 2007 | Journal of Applied Polymer Science105 ( 6 ) , pp.3448 - 3457

Synthesis of Poly(methyl methacrylate), PMMA-multigraft copolymers derived from linseed oil, soybean oil, and linoleic acid PMMA-g-polymeric oil/oily acid-g-poly(3-hydroxy alkanoate) (PHA), and their protein adsorption and bacterial adherence have been described. Polymeric oil/oily acid peroxides [polymeric soybean oil peroxide (PSB), polymeric linseed oil peroxide (PLO), and polymeric linoleic acid peroxide (PLina)] initiated the copolymerization of MMA and unsaturated PHA-soya to yield PMMA-PLO-PHA, PMMA-PSB-PHA, and PMMA-PLina-PHA multigraft copolymers. PMMA-PLina-PHA multigraft copolymers were completely soluble while PMMA-PSB-P . . .HA and PMMA-PLO-PHA multigraft copolymers were partially crosslinked. Crosslinked parts of the PLO- and PSB-multigraft copolymers were isolated by the sol gel analysis and characterized by swelling measurements in CHCl3. Soluble part of the PLO- and PSB-multigraft copolymers and completely soluble PLina-multigraft copolymers were obtained and characterized by spectroscopic, thermal, gel permeation chromatography (GPC), and scanning electron microscopy (SEM) techniques. In the mechanical properties of the PHA-PLina-PMMA, the elongation at break is reduced up to ~ 9%, more or less preserving the high stress values at its break point (48%) when compared to PLina-g-PMMA. The solvent casting film surfaces were studied by means of adsorption of blood proteins and bacterial adhesion. Insertion of the PHA into the multigraft copolymers caused the dramatic increase in bacterial adhesion on the polymer surfaces. PHA insertion into the graft copolymers also increased the protein adsorption. © 2007 Wiley Periodicals. Inc Daha fazlası Daha az

Polymeric linoleic acid-polyolefin conjugates: Cell adhesion and biocompatibility

Çakmaklı, Birten | Hazer, Baki | Tekin, İshak Özel | Açıkgöz, Şerefden | Can, Murat

Article | 2007 | JAOCS, Journal of the American Oil Chemists' Society84 ( 1 ) , pp.73 - 81

To diversify edible-oil polymer composite, polymeric linoleic acid (PLina) peroxide was obtained by the auto-oxidation of linoleic acid in a simple way for use as a macroinitiator in free radical polymerization of vinyl monomers. Peroxidation, epoxidation, and/or perepoxidation reactions of linoleic acid under air at room temperature resulted in PLina, having soluble fraction more than 91 weight percent (wt%), with molecular weight ranging from 1,644 to 2,763 Da, and containing up to 1.0 wt% of peroxide. PLina initiated the free radical polymerization of ether styrene (S), methyl methacrylate (MMA), or n-butyl methacrylate (nBMA) to . . . give PLina-g-polystyrene (PS), PLina-g-poly-MMA (PMMA), and PLina-g-poly- nBMA (PnBMA) graft copolymers. The polymers obtained were characterized by proton nuclear magnetic resonance (1H NMR), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC), and gel permeation chromatography (GPC) techniques. Microstructure of the graft copolymers was observed by using scanning electron microscope (SEM). Graft copolymers obtained contained polymeric linoleic acid in a range between 8.5 and 19.3 mol percent (mol%). PLina-g-PS, PLina-g-PMMA and PLina-g-PnBMA graft copolymer samples were also used in cell culture studies. Fibroblast and macrophage cells were strongly adhered and spread on the copolymer film surfaces. These newly synthesized copolymers were tested for their effects on human blood protein adsorption compared with PMMA graft copolymers containing polymeric soybean oil and polymeric linseed oil; interestingly we observed a dramatic decrease in the protein adsorption on the linoleic acid graft copolymer, which is important in tissue engineering. © AOCS 2007 Daha fazlası Daha az

6698 sayılı Kişisel Verilerin Korunması Kanunu kapsamında yükümlülüklerimiz ve çerez politikamız hakkında bilgi sahibi olmak için alttaki bağlantıyı kullanabilirsiniz.

Bu site altında yer alan tüm kaynaklar Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.