K-en yakın komşuluk, yapay sinir ağları ve karar ağaçları yöntemlerinin sınıflandırma başarılarının karşılaştırılması

Tıp alanında bulunan mevcut veri oldukça fazla ve hayati öneme sahiptir. Veri madenciliği teknikleri ile hayati öneme sahip olan bu verilerden daha fazla yararlanmak mümkündür. Veri madenciliği son yıllarda oldukça önemli bir konu haline gelmesine ve hemen hemen her alanda uygulama sahası bulmasına rağmen ülkemizde sağlık alanında çok yaygın kullanılmamaktadır. Bu tez çalısmasında veri madenciliği yöntemlerinden, k-en yakın komşuluk, yapay sinir ağları ve karar ağaçları yöntemlerinin sınıflandırma başarılarının karşılastırılması amaçlanmıstır. Bu amaçla Bülent Ecevit Üniversitesi Uygulama ve Araştırma Hastanesi Kadın Hastalıkları ve Doğum Polikliniği’ne başvuran erken ve zamanında doğum yapan gebelerden elde edilen veri setine bu üç teknik uygulanarak, sınıflandırma başarıları hesaplanmıstır. Yapılan analizler sonucunda doğru sınıflandırma oranları, k-en yakın komşuluk analizi için % 78.3, yapay sinir ağı tekniği için % 90.8 ve karar ağacı yöntemi için ise % 82.5 olarak bulunmuş ve yapay sinir ağı tekniğinin diğer iki yönteme göre sınıflandırma başarısının daha iyi olduğu görülmüştür.

The amount of medical data is huge and vital. It is possible to obtain more benefit from these data by data mining techniques. Although the data mining has been becoming a very important subject and being used in almost all fields in recent years, it has no widely use in the health sector in our country. In this thesis study, it was aimed to compare of the classification success of the knearest neighbor, artifical neural network and the decision trees techniques. For this purpose, these three techniques were applied and the classification success was measured on the pregnants those gave preterm birth and those gave birth in time in Departments of Obstetrics and Gynecology of Bulent Ecevit University. After the analysis of the results, the correct classification ratios found to be 78.3 % for knearest neighbor method, 90.8 % for artifical neural network, 82.5 % for decision trees method and it was concluded that the artifical neural network is more successful than the other two methods.

Eser Adı
[dc.title]
K-en yakın komşuluk, yapay sinir ağları ve karar ağaçları yöntemlerinin sınıflandırma başarılarının karşılaştırılması
Tez Danışmanı
[dc.contributor.advisor]
Sümbüloğlu, Vildan
Yayıncı
[dc.publisher]
Bülent Ecevit Üniversitesi, Sağlık Bilimleri Enstitüsü, Biyoistatistik Anabilim Dalı
Yayın Türü
[dc.type]
masterThesis
Özet
[dc.description.abstract]
Tıp alanında bulunan mevcut veri oldukça fazla ve hayati öneme sahiptir. Veri madenciliği teknikleri ile hayati öneme sahip olan bu verilerden daha fazla yararlanmak mümkündür. Veri madenciliği son yıllarda oldukça önemli bir konu haline gelmesine ve hemen hemen her alanda uygulama sahası bulmasına rağmen ülkemizde sağlık alanında çok yaygın kullanılmamaktadır. Bu tez çalısmasında veri madenciliği yöntemlerinden, k-en yakın komşuluk, yapay sinir ağları ve karar ağaçları yöntemlerinin sınıflandırma başarılarının karşılastırılması amaçlanmıstır. Bu amaçla Bülent Ecevit Üniversitesi Uygulama ve Araştırma Hastanesi Kadın Hastalıkları ve Doğum Polikliniği’ne başvuran erken ve zamanında doğum yapan gebelerden elde edilen veri setine bu üç teknik uygulanarak, sınıflandırma başarıları hesaplanmıstır. Yapılan analizler sonucunda doğru sınıflandırma oranları, k-en yakın komşuluk analizi için % 78.3, yapay sinir ağı tekniği için % 90.8 ve karar ağacı yöntemi için ise % 82.5 olarak bulunmuş ve yapay sinir ağı tekniğinin diğer iki yönteme göre sınıflandırma başarısının daha iyi olduğu görülmüştür.
Özet
[dc.description.abstract]
The amount of medical data is huge and vital. It is possible to obtain more benefit from these data by data mining techniques. Although the data mining has been becoming a very important subject and being used in almost all fields in recent years, it has no widely use in the health sector in our country. In this thesis study, it was aimed to compare of the classification success of the knearest neighbor, artifical neural network and the decision trees techniques. For this purpose, these three techniques were applied and the classification success was measured on the pregnants those gave preterm birth and those gave birth in time in Departments of Obstetrics and Gynecology of Bulent Ecevit University. After the analysis of the results, the correct classification ratios found to be 78.3 % for knearest neighbor method, 90.8 % for artifical neural network, 82.5 % for decision trees method and it was concluded that the artifical neural network is more successful than the other two methods.
Kayıt Giriş Tarihi
[dc.date.accessioned]
2020-06-30
Açık Erişim Tarihi
[dc.date.available]
2020-06-30
Yayın Yılı
[dc.date.issued]
2012
Yayın Dili
[dc.language.iso]
tur
Konu Başlıkları
[dc.subject]
Veri madenciliği
Konu Başlıkları
[dc.subject]
k-en yakın komşuluk
Konu Başlıkları
[dc.subject]
yapay sinir ağları
Konu Başlıkları
[dc.subject]
karar ağaçları
Konu Başlıkları
[dc.subject]
doğru sınıflandırma oranı
Konu Başlıkları
[dc.subject]
Data mining
Konu Başlıkları
[dc.subject]
k-nearest neighbor
Konu Başlıkları
[dc.subject]
artifical neural network
Konu Başlıkları
[dc.subject]
decision trees
Konu Başlıkları
[dc.subject]
correct classification ratio
Tek Biçim Adres
[dc.identifier.uri]
https://hdl.handle.net/20.500.12628/9358
Yazar
[dc.contributor.author]
Köktürk, Fürüzan
Tam Metin İndirmek için tıklayın Ön izleme
Görüntülenme Şehir
Görüntülenme Ülke
İndirme Şehir
İndirme Ülke
Görüntülenme & İndirme
Görüntülenme
4
09.12.2022 tarihinden bu yana
İndirme
1
09.12.2022 tarihinden bu yana
Son Erişim Tarihi
02 Mayıs 2023 11:30
Google Kontrol
Tıklayınız
Altmetric
https://hdl.handle.net/20.500.12628/9358">
sınıflandırma network artifical neural madenciliği techniques classification decision neighbor knearest success yakın alanında mining komşuluk Ecevit oldukça method hayati öneme important ratios correct results subject becoming concluded successful Although benefit obtain methods possible analysis preterm
6698 sayılı Kişisel Verilerin Korunması Kanunu kapsamında yükümlülüklerimiz ve çerez politikamız hakkında bilgi sahibi olmak için alttaki bağlantıyı kullanabilirsiniz.


Bu site altında yer alan tüm kaynaklar Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.