Biswas, Chandra Sekhar | Sulu, Elvan | Hazer, Baki
Article | 2015 | Journal of Applied Polymer Science132 ( 12 )
Two series of macroporous poly(N-ethylacrylamide) (PNEAM) gels are synthesized in different composition of methanol-water mixtures (xm=0, 0.06, 0.13, 0.21, 0.31, and 0.43; where xm=mole fraction of methanol) in presence as well as in the absence of 0.1M Y(OTf)3 Lewis acid as additive. The gels synthesized in the absence of Lewis acid are atactic and in the presence of the same are isotactic. Synthesis of the corresponding linear PNEAM homopolymers shows that, the isotacticity (meso dyad, %) of the resulted polymers increases for the gels prepared in the presence of Lewis acid (LA) and remains constant for the gel prepared in the abs . . .ence of LA, respectively, with the increase in the concentration of the synthesis solvent methanol. SEM micrographs reveal that, the hydrogels synthesized in the presence of LA are more porous than the gels prepared in the absence of LA. Swelling ratio of all the hydrogels decreases with the increase in the temperature and LA gels show higher swelling ratio values than non LA gels (NLA). Deswelling rate of the hydrogels prepared in methanol-water mixture in presence of LA is faster than the hydrogels prepared in absence of LA. Moreover, reswelling rate increases with increase in the isotacticity of the PNEAM segment in the gel. All these results have been explained on the basis of the formation of highly porous hydrogels with higher isotactic PNEAM chain segment in the presence of LA in methanol-water mixtures. © 2014 Wiley Periodicals, Inc Daha fazlası Daha az
Korkut, Şeyda | Kılıç, Muhammet Samet
Article | 2016 | Environmental Progress and Sustainable Energy35 ( 3 ) , pp.859 - 866
Poly(3-thiopheneacetic acid-co-3-methylthiophene) conductive polymer was electrosynthesized with ferrocene and used for an enzymatic fuel cell including glucose oxidase and bilirubin oxidase enzymes. The system was operated in a single-compartment and membrane-less cell by using glucose as fuel. Detailed optimization ensured to achieve considerable power output to generate sustainable energy from municipal wastewater as a renewable fuel source. Maximum power density of 1 µW/cm2was generated at a cell voltage of +0.56 V in 100 mM, pH 7.4 phosphate buffer with the addition of 10 mM synthetic glucose. The working electrodes could harve . . .st glucose readily found in the municipal wastewater of Zonguldak City in Turkey by generating a power density of 4 µW/cm2for the municipal wastewater sample. In this way, the organic pollutants in wastewater could be evaluated by converting them into the electrical energy using an enzymatic fuel cell for the first time. © 2015 American Institute of Chemical Engineers Environ Prog, 35: 859–866, 2016. © 2015 American Institute of Chemical Engineers Environ Pro Daha fazlası Daha az