Development of statistical models for trihalomethane (THM) removal in drinking water sources using carbon nanotubes (CNTs)

Özdemir, Kadir | Güngör, Ömer

Article | 2018 | Water SA44 ( 4 ) , pp.680 - 690

This research developed models using the multiple linear regression technique for prediction of trihalomethane (THM) removal from chlorinated drinking water sources through a combination of a coagulation process with carbon nanotubes (CNTs). Terkos Lake water (TLW), Buyukçekmece Lake water (BLW) and Ulutan Lake water (ULW) samples were coagulated by a conventional coagulant (alum) and increasing doses of single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) with the addition of alum. Also, chlorination experiments were conducted with water reservoirs from TLW, BLW and ULW, with different water quality re . . .garding bromide concentration and organic matter content. The factors studied affecting THM removal were contact time, chlorine dose, coagulation process, total organic carbon (TOC), and specific ultraviolet absorbance (SUVA). Statistical analysis of the results focused on the development of multiple regression models, as Models 1 and 2, for predicting total trihalomethane (TTHM) based on the use of contact time, SWCNTs and MWCNTs doses, chlorine dose and TOC. When the two models were compared, Model 1 proved best suited to describe THM removal for the three water sources. The developed models provided satisfactory estimations of THM removal; the model regression coefficients for Models 1 and 2 were 0.88 and 0.77, respectively. Furthermore, the root-mean-square error (RMSE) values of 0.083 and 0.126 confirm the reliability of the two models. The results show that THM removal can be simply predicted by using the multiple linear regression technique in chlorinated drinking water sources. © 2018, South African Water Research Commission. All rights reserved Daha fazlası Daha az

Application of the soil and water assessment tool model on the Lower Porsuk Stream Watershed

Güngör, Ömer | Göncü, Serdar

Article | 2013 | Hydrological Processes27 ( 3 ) , pp.453 - 466

Watershed models that combine hydrology and water quality are being widely used in integrated watershed management for the determination of best water management practices. In this study, the hydrology of the Lower Porsuk Stream Watershed in Turkey has been modelled with the Soil and Water Assessment Tool to determine optimal water management strategies. The calibration and the validation process have been accomplished using data from two monitoring stations. The model has been run for the 1978-2009 period, and while the 1998-2004 period has been used for calibration, the validation has spanned the whole period. The SWATCup calibrat . . .ion and uncertainty program has been used for this purpose. No significant differences have been detected among different iteration numbers in the calibration period. The monthly Nash-Sutcliffe and R2 performance indicators for the upstream Esenkara station have been 0.74 and 0.88, respectively, for the calibration period, and 0.87 and 0.87, respectively, for the validation period. The Kiranharmani station, which is located close to the watershed outlet, has shown values of 0.59 and 0.72, respectively, for the calibration period, and 0.44 and 0.56, respectively, for the validation period. There are uncertainties in the abstracted irrigation and groundwater quantities that have reflected in the results in the Kiranharmani station, which is more affected as it lies downstream of the irrigation areas. The effects of different irrigation practices on the flow regime have been also investigated. A scenario has been implemented in which drip irrigation wholly replaces conventional furrow and sprinkler irrigation. The scenario has shown increases in stream flows by 87% for the whole year. The adoption of more efficient irrigation practices thus results in reducing the water stress induced by irrigation demands. With this study, a modelling framework has been founded to aid water management applications in the Lower Porsuk Stream Watershed by generating scenarios for best management practices. © 2012 John Wiley & Sons, Ltd. Daha fazlası Daha az

Water quality monitoring with emphasis on estimation of point and diffuse pollution sources

Albek, Erdem Ahmet | Göncü, Serdar | Uygun, Burcu Şimşek | Albek, Mine | Avdan, Zehra Yiğit | Güngör, Ömer

Article | 2019 | Global Nest Journal21 ( 2 ) , pp.163 - 171

Population growth, urbanization and anthropogenic activities are becoming a serious problem for water resources in Turkey, which necessitates their monitoring and maintenance of water quality. In this study, water quality was implemented in the Porsuk Stream in Inner Anatolia, Turkey. Water samples were collected at monthly intervals between the period of 2008-2010 at four selected stations. Twenty one water quality parameters were measured which are water temperature (T), pH, dissolved oxygen (DO), electrical conductivity (EC), salinity, turbidity, chloride, suspended solids, dissolved solids, organic nitrogen (Org-N), ammonium nit . . .rogen (NH3-N), nitrite nitrogen (NO2-N), nitrate nitrogen (NO3-N), total organic carbon, biological oxygen demand (BOD), chemical oxygen demand (COD), total coliform, alkalinity, orthophosphate phosphorus (PO4 3--P), total phosphorus and chlorophyll-a. The monitoring was conducted to see how the water quality changed along the stream in response to various anthropogenic activities. Besides, a paired t-test was utilized to determine the concentration differences at stations above and below the single most important point source of pollutants (Eskisehir city). Moreover, a regression model was used to establish relations between water quality parameters and flow and to estimate nonpoint source loadings. © 2019 Global NEST Printed in Greece Daha fazlası Daha az

6698 sayılı Kişisel Verilerin Korunması Kanunu kapsamında yükümlülüklerimiz ve çerez politikamız hakkında bilgi sahibi olmak için alttaki bağlantıyı kullanabilirsiniz.

Bu site altında yer alan tüm kaynaklar Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.