Treatment of emulsified oils by electrocoagulation: Pulsed voltage applications

Genç, Ayten | Bakırcı, Büşra

Article | 2015 | Water Science and Technology71 ( 8 ) , pp.1196 - 1202

The effect of pulsed voltage application on energy consumption during electrocoagulation was investigated. Three voltage profiles having the same arithmetic average with respect to time were applied to the electrodes. The specific energy consumption for these profiles were evaluated and analyzed together with oil removal efficiencies. The effects of applied voltages, electrode materials, electrode configurations, and pH on oil removal efficiency were determined. Electrocoagulation experiments were performed by using synthetic and real wastewater samples. The pulsed voltages saved energy during the electrocoagulation process. In cont . . .inuous operation, energy saving was as high as 48%. Aluminum electrodes used for the treatment of emulsified oils resulted in higher oil removal efficiencies in comparison with stainless steel and iron electrodes. When the electrodes gap was less than 1 cm, higher oil removal efficiencies were obtained. The highest oil removal efficiencies were 95% and 35% for the batch and continuous operating modes, respectively. © IWA Publishing 2015 Daha fazlası Daha az

Destabilization and treatment of emulsified oils in wastewaters by electrocoagulation

Genç, Ayten | Bakırcı, Büşra

Article | 2016 | Water Environment Research88 ( 11 ) , pp.2008 - 2014

In this study, the optimum operating conditions for the treatment of emulsified oils by electrocoagulation were determined depending on droplet stability analysis. Zeta potential measurements were used as the indication of oil droplet charges. In addition, the effects of pH and ionic conductivity on the droplet sizes and surface charges were investigated. The studied emulsified oil droplet sizes were more sensitive to changes in pH rather than salt concentration. The droplets became larger and unstable in alkaline conditions. As the initial pH of wastewaters increased, the oil removal efficiency increased during the electrocoagulati . . .on experiments as well. The use of iron or aluminum electrodes resulted in higher removal efficiencies in comparison to stainless steel electrodes. In addition, the energy consumption for aluminum electrodes was much lower than iron electrodes. To obtain 98% oil removal efficiency, distance between the electrodes was recommended to be less than or equal to 1 cm. © 2016, Water Environment Federation. All rights reserved Daha fazlası Daha az

Electroflotation of oily wastewater using stainless steel sponge electrodes

Genç, Ayten | Göç, Sercan

Article | 2018 | Water Science and Technology78 ( 7 ) , pp.1481 - 1488

In this study, emulsified oil removals have been studied electrochemically by using stainless steel sponge electrode beds. A first-order electroflotation model was developed and the model estimation were consistent with the experimental results. It was found out that the mean electroflotation rate constant was mainly a function of the voltage applied to the electrode beds. In addition, the properties of intermediate materials (electrical conductivity) placed between the anode and cathode electrode beds strongly affected removal yields. For the initial concentration of 57,150 mg/L, the chemical oxygen demand (COD) removal was obtaine . . .d as 85% under the conditions of voltage gradient 15 V. The experiments were also performed by varying the electrode bed lengths. Even though higher oil yields were obtained at 27 cm bed length, similar oil yields were also obtained at 18 cm bed length, especially after 60 min, with less energy consumption. Therefore, the optimum electrode bed length was concluded to be 18 cm. © IWA Publishing 2018 Water Science & Technology Daha fazlası Daha az

6698 sayılı Kişisel Verilerin Korunması Kanunu kapsamında yükümlülüklerimiz ve çerez politikamız hakkında bilgi sahibi olmak için alttaki bağlantıyı kullanabilirsiniz.

Bu site altında yer alan tüm kaynaklar Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.