Bulunan: 5 Adet 0.001 sn
Koleksiyon [18]
Tam Metin [2]
Yayın Türü [2]
Yazar [8]
Konu Başlıkları [20]
Yayıncı [3]
Yayın Dili [2]
Dergi Adı [3]
Classification of refractive disorders from electrooculogram (EOG) signals by using data mining techniques

Kaya, Ceren | Erkaymaz, Okan | Ayar, Orhan | Özer, Mahmut

Proceedings | 2018 | 26th IEEE Signal Processing and Communications Applications Conference, SIU 2018 , pp.1 - 4

Refractive disorders are common health problems in the community and they are the most important cause of visual impairment. In this study, it was aimed to classify the individuals who have hypermetropia and myopia refractive disorders or not. For this, horizontal and vertical Electrooculogram (EOG) signal data from the right and left eyes of the individuals were used. The performance of the data was investigated by using Logistic Regression (LR), Naive Bayes (NB), Random Forest (RF) and REP Tree (RT) data mining methods. According to the obtained results, REP Tree method has shown the most successful classification performance to d . . .etect hypermetropia and myopia refractive disorders from Electrooculogram (EOG) signals. © 2018 IEEE Daha fazlası Daha az

Comparison of artificial neural network and regression models to diagnose of knee disorder in different postures using surface electromyography

Uzun, Rukiye | Erkaymaz, Okan | Şenyer Yapıcı, İrem

Article | 2018 | Gazi University Journal of Science31 ( 1 ) , pp.100 - 110

The surface electromyography (sEMG) is useful tool to diagnose of knee disorder in clinical environments. It assists in designing the clinical decision support systems based classification. These systems exhibit complex structure because of sEMG data obtained at different postures at this study. In this context, we have researched the classification performance of each posture using artificial neural network (ANN) and logistic regression (LR) models and have showed that the classification success of the model used sitting posture data is higher than other postures (gait and standing). We have promoted this finding by using machine l . . .earning and statistical methods. The results show that the proposed models can classify with over 95% of success, and also the ANN model has higher performance than the LR model. Our ANN model outperforms reported studies in literature. The accuracy results indicate that the models used the only sitting posture data can exhibit successful classification for the knee disorder. Therefore, the usage of complex dataset is prevented for diagnosing knee disorder. © 2018, Gazi University Eti Mahallesi. All rights reserved Daha fazlası Daha az

Classification of cervical cancer data and the effect of random subspace algorithms on classification performance

Erkaymaz, Okan | Palabaş, Tuğba

Proceedings | 2018 | 26th IEEE Signal Processing and Communications Applications Conference, SIU 2018 , pp.1 - 4

Computer assisted automatic diagnostic systems are used for the purpose of speeding up diagnosis and treatment and helping to make the right decision. In this study, cervical cancer is identified using four basic classifiers: Naive Bayes (NB), k-Nearest Neighbor (kNN), Multilayer Perceptron (MLP) and Decision Trees (KA-C4.5) algorithms and random subspaces ensemble algorithm. Gain Ratio Attribute Evaluation (GRAE) feature extraction algorithm is applied to contribute to classification performance. The classification results obtained with all datasets and reduced datasets are compared with respect to performance criteria such as accu . . .racy, Root Mean Square Error (RMSE), Sensitivity, Specificity performance criteria. According to the obtained performance analysis, it is seen that the classification performance with the random subspace ensemble algorithm using the kNN basic classifier on the reduced data set is the highest (%95.51). © 2018 IEEE Daha fazlası Daha az

Computer-assisted diagnosis of vertebral column diseases by adaptive neuro-fuzzy inference system

Uzun, Rukiye | İşler, Yalçın | Erkaymaz, Okan | Kocadayı, Yasemin

Proceedings | 2018 | 26th IEEE Signal Processing and Communications Applications Conference, SIU 2018 , pp.1 - 4

In this study, a clustering algorithm based on adaptive neural fuzzy inference system (ANFIS) was used for computer-assisted diagnosis of the vertebral column disorder from machine learning databases of UCI (University of California Irvine). Features of pelvic incidence, pelvic tilt and lumbar lordosis angle given in this dataset was applied to the inputs of the algorithm. The performance of algorithm was evaluated using mean square error and regression coefficient criteria to discriminate patients with vertebral column disease from healthy subjects. As a result, the classification performance of 90.82% was obtained by using the gen . . .erated model of ANFIS. © 2018 IEEE Daha fazlası Daha az

Impact of hybrid neural network on the early diagnosis of diabetic retinopathy disease from video-oculography signals

Kaya, Ceren | Erkaymaz, Okan | Ayar, Orhan | Özer, Mahmut

Article | 2018 | Chaos, Solitons and Fractals114 , pp.164 - 174

In this study, we introduce two hybrid artificial neural network models with particle swarm optimization algorithm to diagnose diabetic retinopathy based on the Video-Oculography signals. The hybrid models use Discrete Wavelet Transform and Hilbert-Huang Transform separately to extract features from the signals. The classification performance of both models is analyzed comparatively. We show that the model based on Hilbert–Huang Transform exhibits better classification performance than the model based on the Discrete Wavelet Transform. © 2018 Elsevier Ltd

6698 sayılı Kişisel Verilerin Korunması Kanunu kapsamında yükümlülüklerimiz ve çerez politikamız hakkında bilgi sahibi olmak için alttaki bağlantıyı kullanabilirsiniz.

Bu site altında yer alan tüm kaynaklar Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.