Özer, Mahmut
Proceedings | 2003 | Mathematical and Computational Applications8 ( 1-3 ) , pp.71 - 78
In this study, phase-plane analysis is carried out for a simplified model of Purkinje cell dendrite in terms of voltage-gated ionic channels involved. State variables, nullclines and equilibrium points of the model are determined, and effects of ionic channel conductance and injected current on the shape of nullclines and the equilibrium points are investigated. In this study, phase-plane analysis is carried out for a simplified model of Purkinje cell dendrite in terms of voltage-gated ionic channels involved. State variables, nullclines and equilibrium points of the model are determined, and effects of ionic channel conductance and . . . injected current on the shape of nullclines and the equilibrium points are investigated Daha fazlası Daha az
Özer, Halil | Günay, Durmuş
Other | 2003 | Mathematical and Computational Applications8 ( 1-3 ) , pp.327 - 334
Ductile fracture in metals can involve the generation of considerable porosity caused by nucleation, growth and coalescence of microvoids. This process takes place on micro-level and can not describe by traditional constitutive laws such as von Mises theory. Hence, A. L. Gurson developed a theory which takes account of void growth and showed the role of hydrostatic stress in plastic yield and void growth. In this model the void volume fraction f (the portion of void in the material) is the single damage parameter; its evolution is defined by the incompressibility of the matrix material. (For Lameitre's model the damage variable D is . . . relevant.) To model the material damage by using the Gurson damage approach a series of single elements including different types of loading are used. In the single element cases the results of the Gurson model and von Mises are also compared. In calculations the MARC finite elements software is used to calculate stress, strains and f the void volume fraction. Ductile fracture in metals can involve the generation of considerable porosity caused by nucleation, growth and coalescence of microvoids. This process takes place on micro-level and can not describe by traditional constitutive laws such as von Mises theory. Hence, A. L. Gurson developed a theory which takes account of void growth and showed the role of hydrostatic stress in plastic yield and void growth. In this model the void volume fraction f (the portion of void in the material) is the single damage parameter; its evolution is defined by the incompressibility of the matrix material. (For Lameitre's model the damage variable D is relevant.) To model the material damage by using the Gurson damage approach a series of single elements including different types of loading are used. In the single element cases the results of the Gurson model and von Mises are also compared. In calculations the MARC finite elements software is used to calculate stress, strains and f the void volume fraction Daha fazlası Daha az